T e e T R e R

e ———— e "

T i — gy -

—_— e

|

Sl _— - »
- = 5 il o TR e T

21459

HOW T0
PROGRAM

How to Program
MICROCOMPUTERS

by

William Barden, Jr.

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPCLIS, INDIANA 46268 USA

Copyright © 1977 by Howard W. Sams & Co., Inc.,
Indianapolis, Indiana 46268

FIRST EDITION
SECOND PRINTING—1977

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial content,
in any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-21459-8
Library of Congress Catalog Card Number: 77-77412

Printed in the United States of America.

Preface

Computers have evolved dramatically in size over the last 30 years,
shrinking from government-funded 20-ton behemoths to a few micro-
processor “chips” that can be held in one’s hand. Because these chips
can be mass produced by new semiconductor fabrication techniques,
the cost of the central processing portion of microcomputers is often
only tens of dollars. The effect of this size and price reduction is to
make microcomputers available to many groups that could not afford
them several years ago, and to enable these groups to apply micro-
computer concepts to solve problems and perform tasks that previ-
ously could not be done by computer. Not only can an electronics
engineer use a microcomputer to replace switches and relays in a
traffic light controller, but he can now design an inexpensive weather
recorder. The same engineer may come home to a hobbyist micro-
computer. Chances are, though, he may find that his son is using it
to do his homework, or that his wife is using it to plan the nutritional
requirements of tomorrow’s meals. The computer, in its most recent
form, is truly available to everyone.

Computer programming techniques have been removed from the
priesthood of computer scientists and put within reach of anyone who
has an inexpensive microcomputer. While programming is not as easy
as television science-fiction would have us believe, it is not overly
difficult either. What this book attempts to do is provide a guidebook
to computer programming on the most basic level, machine or assem-
bly-language programming. Here the novice programmer constructs
programs of discrete computer instructions that represent the basic
instruction set or repertoire of the microprocessor. The instruction set
of the microprocessor can be likened to a shop full of woodworking
tools. Each tool is used to perform a certain function, e.g., to chisel,

to drive nails, or to drill holes. To build a chair or to program a given
job many different designs and paths could be used, and many different
types of tools could be employed. The purpose of this book is to offer
some guidelines on how to assemble that chair without using a screw-
driver to chisel away wood or a drill to pound in nails.

While many microprocessors are being employed in industry, the
use of three models is widespread. These three are also almost exclu-
sively used in hobbyist microcomputers. The first is the Intel 8080,
one of the original microprocessors of the current generation of micro-
processors. The other two are also widely used—the Motorola MC-
6800 and the MOS Technology MCS6502. This book discusses the
architecture and instruction sets of the three models and draws on the
similarities between them. In particular, the instruction sets find a
great deal of common ground. Each has similar instructions, such as
addition, subtraction, and shifting. When programming examples are
provided, the general approach to the problem is first treated, and
then specific implementation of the problem on each of the three types
is illustrated. While this book will not produce a polished programmer,
just as one carpentry class does not yield a master craftsman, it should
help in producing a chair that can at least be used in the spare bed-
roon.

The book is divided into four parts. The first, “Basic Concepts,”
may be scanned by those readers who already know the binary, octal,
and hexadecimal number systems, basic operations with binary num-
bers, basic computer operation, and binary-coded-decimal and ASCII
codes. The second, “Microcomputer Architecture and Operation,”
covers 8080, 6800, and 6502 architecture in the first chapter of Part 2.
The many microcomputer addressing modes are covered in the next
chapter. Types of memory and stack operation associated with micro-
computers are described in the third,chapter of this part. Similarities
and differences between the instruction sets of the three microproces-
sors are treated in the next chapter. Input/output (I/0) and interrupt
processing are described in the last two chapters of this part.

Part 3, “Assembly Language Programming With Microcomputers,”
covers the techniques of using the instruction sets of the three micro-
processors to perform the functions of moving data, arithmetic opera-
tions, double- and multiple-precision, branching, loops, indexing, sub-
routines, stack operations, table and list processing, bit processing,
decimal and floating-point operations, and I/O operations. Examples
are provided of the general approach to the problem. For example,
there are three or more ways to multiply numbers in microprocessors.
These methods are first described without regard to microprocessor,
and are then implemented on each of the three microprocessors with
illustrations of the actual assembly language code used to perform
the function.

The last part of the book provides a number of precanned routines
to perform common operations. The reason for this is twofold. The
routines provide the reader with a complete model to follow for many
of the techniques discussed in the book. In addition, these are useful
routines that can be used by the reader on his 8080, 6800, or 6502
system, saving him many hours of reinventing the power drill (if the
reader will excuse one more reference to the workshop analogy).
Both assembly-language and machine code is provided.

Programming in assembly language is enjoyable, it is extremely
rewarding, and the resulting programs are at least two orders of mag-
nitude faster in execution than higher-language interpreters. This
means that your assembly language programs will run in seconds
rather than minutes, and minutes rather than hours. The author hopes
that the reader will gain as much pleasure as he has from this type
of programming.

WILLIAM BARDEN, JR.

To Clara Barden and William (Blackie) Damp

Contents

PART 1: BASIC CONCEPTS

Chapter 1. THE MICROCOMPUTER EXPLOSION .
Computers before microcomputers. The advent of micropro-
cessors. The Intel 4004. The 8008. The 8080, 6800, and
6502 microprocessors. Hobbyist microcomputers. What is
being done with microcomputer systems.

Chapter 2. BINARY AND OTHER NUMBER SYSTEMS .
The decimal system and why we use it. The possibility of using
other numbers as a base. Binary representation. Binary com-
ponents. Converting from binary to decimal. From decimal
to binary. The advantage of base 8 and base 16 for notation
purposes. Octal and hexadecimal conversions. Fractional
representation.

Chapter 3. MICROCOMPUTER ARITHMETIC OPERATIONS .
Fixed-length fields. Fields within words. Signed binary num-
bers. Two’s complement representation. Addition of binary
numbers. Overflow and carry. Arithmetic operations in mi-
crocomputers. Logical operations.

Chapter 4. Basic COMPUTER OPERATIONS e
General computer operations. Microcomputer operations.
Microcomputer architecture. I/0 operations. Memory oper-
erations. Instruction execution sequence.

Chapter 5. DATA CobEs WITHIN MICROCOMPUTERS
Binary coded decimal. Binary-coded-decimal arithmetic opera-
tions. Baudot code. ASCII code. EBCDIC code. Gray
code.

PART 2: MICROCOMPUTER ARCHITECTURE
AND OPERATION

Chapter 6. MICROPROCESSOR AND MICROCOMPUTER

ARCHITECTURE e
8080 architecture. = Microcomputers built around the 8080.
6800 architecture. Microcomputers built around the 6800.
6502 architecture. Microcomputers built around the 6502.

12

16

23

30

36

46

Chapter 7. MICROCOMPUTER ADDRESSING MODES .
Why have different addressing modes? Short instructions.
Immediate addressing. Memory address instructions. Rela-
tive addressing. Indexed addressing. Indirect addressing.

Chapter 8. MICROCOMPUTER MEMORY AND STACK

OPERATION
Types of memory. 1/0 addressing. Interrupt address assign-
ments. Memory stack allocation.

Chapter 9. MICROCOMPUTER INSTRUCTION SETS
Instructions that move data. Arithmetic and logical mstruc-
tions. Shifts. Jumps and branches. Jumps and branches
to subroutines. Register and memory increments and decre-
ments. Compare and test. Stack-related instructions. Flag-
type instructions. Special instructions.

Chapter 10. MICROCOMPUTER INPUT/OUTPUT .o
Programmed 1/0. Direct-memory-access 1/0. Serial 1/0.
Parallel interfaces. Special-purpose interfaces.

Chapter 11. MICROCOMPUTER INTERRUPT PROCESSING
Justification for using interrupts. Saving the environment.
8080 interrupt processing. 6800 interrupt processing. 6502
interrupt processing.

PART 3: ASSEMBLY LANGUAGE PROGRAMMING
WITH MICROCOMPUTERS

Chapter 12. ASSEMBLY LANGUAGE VS. MACHINE LANGUAGE .

Machine language coding. Symbolic representation of instruc-
tions and addresses. Hand assembling. Assembler opera-
tions. Pseudo-operations. Expressions.

Chapter 13. MoVING DATA e
8080: Immediate operands. MOV instructions. Direct loads
and stores. Register-to-register moves.
6800: Index register and stack pointer moves. Stores and loads.
Register-to-register moves.
6502: Loads and stores. Register-to-register moves.

Chapter 14. INTEGER ARITHMETIC OPERATIONS .
Overflow. Carry. Other flags. Multiplication methods
Division methods. 8080 examples. 6800 examples. 6502
examples.

Chapter 15. DOUBLE AND MULTIPLE-PRECISION SCHEMES

Ranges of multiple-precision numbers. Addition. Subtrac-
tion. Multiplication of multiple-precision numbers. Division
of multiple-precision numbers. 8080 examples. 6800 exam-

ples. 6502 examples.

60

65

74

79

86

92

99

106

Chapter 16. BRANCHING, LooPs, AND INDEXING oo
Loop operation. Indexing. Nested loops. Conditional
branches. Loops versus straight-line coding. 8080 examples.
6800 examples. 6502 examples.

Chapter 17. SUBROUTINES . e
Use of subroutines. Passing arguments. Saving registers.
Reentrancy. Stack pointer maintenance. Subroutines versus
straight-line coding. 8080 examples. 6800 examples. 6502
examples.

Chapter 18. STACK OPERATIONS e
Stack location. Stack initialization. Stack overflow. Push-
ing and pulling data. Interrupt action. 8080 examples.
6800 examples. 6502 examples.

Chapter 19. TABLE OPERATIONS e
Displacement tables. Content addressable tables. Searching
for a key. Sequential searches. Binary searches. Hash-
related searches. Arrays. 8080 examples. 6800 examples.
6502 examples.

Chapter 20. LisT PROCESSING . . .

Single-ended lists. Double-ended lists. Insertion and dele-
tions of items in a list. ~ Bubble sorts. ~ Merging data. 8080
examples. 6800 examples. 6502 examples.

Chapter 21. BIT PROCESSING AND MANIPULATION .
Retrieving fields of data. Storing fields of data. Testing fields.
8080 examples. 6800 examples. 6502 examples.

Chapter 22. DECIMAL AND FLOATING-POINT ARITHMETIC
Decimal arithmetic. Converting between ASCII and bcd data.
Floating-point representation. Floating-point addition, subtrac-
tion, multiplication, and division. 8080 examples. 6800 ex-
amples. 6502 examples.

Chapter 23. 1/0 OPERATIONS . S e
Teletype I/0. Wait-for-complete I/0. Interrupt-driven I/O.
170 buffers. 170 drivers. 8080 examples. 63800 examples.
6502 examples.

Chapter 24. PUTTING IT ALL TOGETHER . e
The design specification. Structuring. Determining the basic
flow of the program. Flow diagrams. Coding. Desk-
checking. Debugging. Final documentation.

PART 4: PROGRAMMING ALGORITHMS

Chapter 25. PROGRAMMING ALGORITHMS .
Explanation of the subroutines in this section.
SCOMP Simple Compare for 8080
SHIFT Double-Precision Shift for 8080, 6800, 6502
TIME Timing Routine for 8080, 6800, 6502

113

120

126

131

140

147

155

164

173

180

UNSPM Single-Precision Multiply for 8080, 6800, 6502
UNSPD Single-Precision Divide for 8080, 6800, 6502
MPADD Multiple-Precision Add for 8080, 6800, 6502
MPSUB Multiple-Precision Subtract for 8080, 6800, 6502
ASBXB ASCII Binary to Binary for 8080, 6800, and 6502
ASOXB ASCII Octal to Binary for 8080

ASDXB ASCII Decimal to Binary for 8080, 6800, 6502
ASHXB ASCII Hexadecimal to Binary for 8080, 6800, 6502
BXASB Binary to ASCII Binary for 8080, 6800, 6502
BXASO Binary to ASCII Octal for 8080

BXASD Binary to ASCII Decimal for 8080, 6800, 6502
BXASH Binary to ASCII Hexadecimal for 8080, 6800, 6502
MVDAT Move Data Subroutine for 8080, 6800, 6502
FILLD Fill Data Subroutine for 8080, 6800, 6502
COMST Compare String Subroutine for 8080, 6800, 6502
SRTAB Search Table Subroutine for 8080, 6800, 6502
RANDM Random Number Generator for 8080, 6800, 6502

Appendix A. INTEL 8080 INSTRUCTION SET 237
Appendix B. MoToroLa MC6800 INSTRUCTION SET . . . 241
Appendix C. MOS TECHNOLOGY MCS6502 INSTRUCTION SET 247
INbex25

PR

PART

Basic Concepts

CHAPTER

1

The Microcomputer
Explosion

It’s customary in a first chapter such as this to give a history of
computers, starting with primitive man’s discovery that he had ten
digits on his hands, and progressing through the abacus, “Napier’s
Bones,” Jacquard’s punched-card equipment, “Babbage’s folly,” and
IBM. The microcomputer is such a recent and important advance-
ment, however, that early computational history really isn’t very rele-
vant. Certainly the concepts of number systems, mathematics, and
electronics have taken thousands of years to develop. The micro-
computer, though, in its first implementation, is just a tyke. It has
been with us for only a few years.

The modern digital computer was conceived during World War II.
Spurred on by the need for war research and the solution of com-
plex mathematical problems, early machines such as EDVAC (Elec-
tronic Discrete Variable Automatic Calculator) and ENIAC (Elec-
tronic Numerical Integrator and Computer) were completed shortly
after the war. Basic concepts, such as storage of computer instructions
inside the computer’s memory, and various memory devices were
developed in this period.

The size and cost of these primitive computers were instrumental
in shaping public stereotypes about computers in general for many
years. The ENIAC, for example, used 18,000 vacuum tubes similar
to radio-type vacuum tubes, occupied a 30-foot by 50-foot room, and
weighed 30 tons. The UNIVAC I, the first commercially available
large-scale computer, although cleaner in appearance, was not much
of an improvement in size. It was introduced in 1951. During the

12

next twenty years computers began to shrink rapidly in size. Vacuum-
tube technology in the early machines gave way to transistor technol-
ogy, and by the late 1950s computers were being sold that were a
factor of ten smaller than their predecessors.

With the development of integrated circuits, another dramatic size
reduction appeared. Integrated circuits less than a square inch in size
held the equivalent of hundreds of transistors. Computers were now
getting down to desk-top size, or at least approaching it. In 1965,
Digital Equipment Corporation (DEC) introduced a 12-bit true
minicomputer, the PDP-8. The PDP-8, however, sold for about
$18,000, which was still out of the range of the average consumer,
especially when optional equipment such as printers and magnetic
tape recorders were added to the computer to make up a computer
system. However, prices were coming down. In addition, minicom-
puters were now much more versatile and faster than earlier machines.
Whereas the ENIAC could perform about 5000 additions per sec-
ond, the PDP-8 could do perhaps 500,000. In place of the patch
cords of the ENIAC, the PDP-8 had fairly efficient core memory and
the beginnings of powerful user-oriented software programs.

During the next ten years, minicomputers continued to decrease
in size and price, with corresponding increases in speed of operation,
capabilities, and support software. By the early 1970s, small con-
figurations of minicomputers were actually available for about $5000.
Computers such as Data General’s Nova, the PDP-8, and Computer
Automation’s “Naked Mini” series made it possible for a rather
affluent experimenter or hobbyist to purchase a minicomputer system
for use in his home.

A significant parallel development of integrated circuitry, however,
made the home computer a reality. Intel Corporation, a semiconduc-
tor manufacturer supplying integrated circuits used in many mini-
computers, developed the first microprocessor chip, the Intel 4004, in
1971. Originally intended for use as a “controller” chip, the 4004
implemented a complete cpu (or central processing unit) on a single
chip. It was true that a dozen or so other chips were needed to make
up a complete computer control system and that only four binary
digits could be processed at one time, but the implications of a
“computer on a chip” were intriguing.

The following year Intel brought out a much more powerful micro-
processor chip, the 8008. It had 48 instructions in its repertoire,
was faster than the 4004, and could handle data in slices of 8 binary
digits, or one “byte.” In addition, the 8008 was competition to mini-
computers at the time, since it could replace those minicomputers
that were dedicated to simpler tasks. Although initially high in cost,
as are the products of many new technologies, prices on the 8008
dropped to the $100 range.

13

Intel’s next answer to the system designer’s needs was their 8080
microprocessor chip, again a great advancement over the previous
generation. Due to a new fabrication technology, it was faster both
from a hardware aspect and the effective number of operations per
second, and it had a larger instruction repertoire.

By this time other semiconductor manufacturers were enthusi-
astically producing microprocessor chip designs of their own. Lit-
erally dozens of microprocessors began to appear, either offering
new architectures and instruction sets or duplicating another manu-
facturer’s design as a “second source.” Motorola Semiconductor’s
MC6800 microprocessor and MOS Technology’s MCS6502 micro-
processor became two of the most popular competitors of the 8080.
With increasing competition came ever lowering prices, not only for
the microprocessor chips themselves, but for support chips and semi-
conductor memory devices.

Although some early microcomputer manufacturers brought out
microcomputers based on Intel’s 8008, it remained for Micro Instru-
mentation and Telemetry Systems (which became MITS) to success-
fully introduce the first low-cost true “home” computer. The MITS
Altair 8800 was brought out in the first part of 1975, and was an
overnight success. It offered an 8080-based microcomputer with
limited memory, control panel, power supply, and complete packaging
for under $500. For the first time, the home computer was within
reach of anyone who was interested and could afford the price of a
stereo or good-quality camera. MITS soon followed the Altair 8800
with a 6800-based model.

Based on the success of the MITS microcomputers, other manu-
facturers started producing microcomputers. Some of these were very
similar to the MITS design, even to the extent of using the same MITS
“bus” structure for their plug-in cards. Others were complete re-
designs based on the 8080. Still others used the 6800 or 6502 or
other microprocessor chips as a base. In addition to the microcom-
puters themselves, a large number of support products, such as mem-
ories and input/output devices, started being produced. All were
priced relatively low in comparison to minicomputer prices.

Currently there are many excellent products being offered at rea-
sonable prices. Basic systems start at several hundred dollars. Options
can be added as the budget allows. For the price of a thousand dollars
or so, one can have a home computer system equivalent to or sur-
passing the typical minicomputer system of five years ago. Further-
more, prices will continue to drop from year to year as integrated-
circuit technology develops and the microprocessor market expands.

What can you do with your system? Hobbyists have used their
microcomputers to decode Morse code from amateur radio receivers,
to control the heating systems of their homes, to aid them in diet

14

planning, to offer their children programmed instruction or visual
games on television terminals, and to plan their stock market pur-
chases. The list of what has been done goes on and on, but the list
of what could and will be done by the home computer hobbyist is
endless. The use of your hobbyist computer is bounded only by your
imagination.

This book will attempt to aid in the pursuit of your personal pro-
gramming goals by providing a description of the basic concepts in-
volved in microcomputers in Chapters 2 through 5. Part 2 describes
microcomputer architecture and operation for those microcomputers
based on the 8080, 6800, and 6502 microptocessor chips. It is a
prerequisite to the actual programming of the microcomputers. Part
3 offers assembly language programming techniques for the micro-
computers described in Part 2. Part 4 provides a number of “canned”
programming modules in assembly language that can be taken directly
from the section and used in your microcomputer system with little
or no modification. Since these represent routines that are used over
and over again, they may save the reader from “reinventing the wheel”
and let him devote his time and energy to “main line” programming,
which is usually much more enjoyable.

In addition to the techniques covered in the book, the reader is
urged to read and subscribe to the many hobbyist periodicals de-
voted to home computing. Many of these provide complete programs
or subroutines, in addition to articles on computer hardware and
programming.

15

CHAPTER

2

Binary and
Other Number Systems

Somewhere, in a universe parallel to ours, there exists a race iden-
tical to the human race except that on each hand there is a thumb and
three fingers, making a grand total of eight digits on both their hands.
Long ago, the race started becoming civilized and described amounts
by holding up the appropriate number of digits. Three horses were
represented by three fingers held up, for example, six head of cattle by
six fingers, seven gflarks by seven fingers, and so forth.

For a while, herds of gflarks greater than eight were represented by
members of the race wiggling their fingers several or many times,
depending upon the number. Then, one of the more astute members
of this parallel race found that fourteen gflarks could be represented
by holding up eight fingers and then by holding up six more fingers.
Gradually the race began to develop their number system. When writ-
ing was introduced, a type of positional notation was employed. A
number like 16 represented one set of eight fingers plus six fingers.
The number 35 replaced three sets of eight fingers plus one set of five
fingers. A number of 233 was somewhat harder to visualize. It re-
placed eight sets of eight fingers repeated twice plus three sets of eight
fingers plus one set of three fingers. This at first was quite a challenge
to the most learned of the race, but through the years they became very
accustomed to their way of representing numbers and developed many
techniques for working with the number system.

If in this parallel universe eight was used as a base, why not four,
two, or even nine (three digits on three hands)? In any of these num-
ber systems, it’s fairly easy to understand the positional notation, but a

16

little harder to work with it. In our decimal system, the number 1239
actually represents, by convention only,

1 X10°+2x102+3 x 10 +9 x 10°=

1000 + 200 + 30 + 9 1239.

Any number to the zeroth power, of course, is equal to one, so that
9 X 10° =9 X 1. The powers of ten increase by one from right to left,
so that any size number can be represented. Likewise, so it is in num-
ber systems that use different numbers from ten as a base. In the par-
allel universe example, a large herd of gflarks might contain, in their
notation, 4577 animals, or

4 x 8 45 x 8+ 7 x 8 + 7 x 8% animals.
In our decimal system the above number would correspond to
4 X512+ 5% 64+ 7% 8+ 7=2431 gflarks.

For convenience in working with several number systems, the base of
the number system is usually written as a subscript to the number, as
in 12394, or 4577,. The former number would be base 10, or decimal,
and the latter base 8, or octal.

Trying some more examples of different number systems, consider
a base of 11. The number 467A;; would actually represent

4 X 1134+6XxX1124+7xX11'+10Xx 110
or, in base ten
4 X 1331 4+6 x 121 +7 X 11+ 10 =6137,,.

Note that no symbol for the tenth digit of the base eleven number
existed. The first ten digits were called 0, 1, 2, 3,4, 5,6, 7, 8, and 9,
for obvious reasons, but the tenth digit had to be given a name, A.
The characters @ or ¢ could have been used just as well. ’

The most important number system for purposes of this book is
base 2, as the reader might suspect. The two digits of the base 2 num-
ber system are chosen to be represented by 0 and 1, only because of
their familiarity to users of the decimal system. The binary number
10110101, represents

IX2"+0x204+1x25+1x2¢40x%x23
+1x224+0Xx21+1X%x20=
12864+0+32+16+0+4+0+ 1 =181y,

Unlike the other systems discussed, the value for each positional digit
is either the power of the base or zero, so that the binary system is
sometimes called a “1-2-4-8” type of code. The first ten decimal digits
are represented in binary by

17

§ 4 2 I |Decimal
0 0
1 1
1 0 2
1 1 3
1 0O 0 4
1 0 1 5
1 1 0 6
1 1 1 7
1 0O 0 0 8
1 0 0 1 9
1 0 1 0 10

The powers of two corresponding to the positional notation have
been recorded above each binary digit. “Binary digit” has been con-
tracted to the word bit. “Four bits” means the same thing as “four
binary digits,” and a four-bit value would be something like 1010, or
1111,. Other samples of binary values would be the six-bit value
101000,, converting to

1 X 25+ 1 X 2% = 404,
and the five-bit binary value of 111115, converting to

I X284+ 1 X224+ 1 X224+ 1 Xx214+1X20=

The last example points out an interesting fact. The largest value
that can be held in any #-bit binary number is one less than 2. For
example, in 111115, nis 5 and 27 is 32. One less than 32 is 31, as
shown. The maximum value that could be held in an eight-bit binary
number is 11111111, or 28 — 1 = 255, The maximum value in a 16-
bit binary number is 26 — 1, or 65,535. Eight-bit and 16-bit binary
numbers are mentioned because they are widely used in computer
equipment.

Why use binary numbers at all in microcomputers? The answer to
that lies in the nature of the electronic devices used in microcom-
puters. It is far easier to implement an “on-off” device, or two-state
device, than one that has eight or ten states. Electronic components
tend to age, and the more states a device must have, the harder it is to
keep the device calibrated. Binary representation will probably be
used in microcomputers until the discovery of a natural device that
has perfect stability in ten states, can be miniaturized, and uses low
power.

Since, for the time being, the reader is inexorably tied to the binary
system in microcomputers, it would be nice to find some easier ways
to work with it. Rather than laboriously converting from binary rep-

18

resentation to decimal by writing down powers of two, a more con-
venient way is offered. This is the double-dabble system, and gets its
name from the method of conversion, which involves taking a bit from
the left, doubling it, and adding it to the bit to the right (dabble). The
binary number 10111,, for example, can be converted to decimal by
taking the leftmost 1, doubling it, adding it to O, yielding 2. The 2 is
then doubled and added to the next bit of 1, yielding 5. The process
is repeated until the partial result has been added to the rightmost bit.

10111, :

1xXx2 +0=2
2xXx24+1=5

5Xx2 +1=11

11 X2 + 1 =23 (answer)
1010, :

1X2 +0=2

2X2 +1=5

5 X2 +0=10 (answer)

Fractional representation is also possible in the binary (or other
base) system. Rather than calling the point separating the integer
from the fraction the decimal point, the point is called, appropriately
enough, the binary point. Bits to the right of the binary point represent
fractional bits in the orders of 14, ¥, %, ¥, and so forth. The mixed
binary number of 1010.111, for example, represents the integer 10+,
plus %% + 14 + 1% or 10 plus 7% = 10.875. Unfortunately, double-
dabble doesn’t work too well with fractional binary numbers, but the
good news is that normally one need not be too concerned with frac-
tions in microcomputers, except when scaling numbers or working
with floating-point numbers, both covered in later chapters.

The process of converting from decimal to binary is a little bit more
tedious. The decimal number is divided by two and any remainder is
saved. The quotient is again divided by two and the remainder saved,
and the process continues until the last quotient is divided by two. The
remainders, in reverse order, are the binary number. An example
should help to clarify this approach. To convert 123;, to binary,

|

2)123 = 61 remainder 1
2) 61 =30 remainder 1
2) 30 = 15 remainder O
2) 15 = 7 remainder 1 1111011, = 1234
2) 7= 3 remainder 1
2) 3= 1 remainder 1
2) 1= 0 remainder 1

19

An alternative method to the division process is the power-of-two
approach, where the decimal number is “inspected” to find the largest
power of two that can be subtracted from it. The process continues
until the original decimal number is reduced down to zero.

Meanwhile, back in our alternate universe, the eight-digited race
has just entered the microcomputer age and made an amazing discov-
ery. Rather than working with long strings of binary numbers, they
have discovered a shorthand notation involving their beloved base eight
notation. Taking any three bits at a time from the right of a binary
number, they have discovered that conversion to base eight, or octal
representation, is very easy to do. Also, reconversion from octal rep-
resentation to binary is just as simple. The binary number 10110101,
for instance, is first divided into groups of three bits, starting from the
right: 10)110)101. Note that the leftmost group lacks one bit. Each
group of three bits is now converted to one of the eight octal digits 0
through 7. Thus binary 10)110)101 becomes 2655. When 2655 is
compared to 10110101, they are both found to equal 181,,. Like-
wise, octal numbers can be easily converted to binary. The octal num-
ber 3765 produces three groups of three binary digits: 11)111)110.
The result is the binary number 11111110,, which, along with 376,
equals 254,,. Octal representation is a convenient way to represent
binary numbers. Eight-bit binary values can be represented in three
octal digits, and 16-bit binary values can be represented in six octal
digits.

Conversion from octal to decimal by the double-dabble method
works quite well, but should really be called octal-dabble. To convert
the octal number 350, to decimal, for example,

3X8 +5=29
29 X 8 + 0 =232,,.

Similarly, the conversion from decimal to octal by the technique of
division of the base and save the remainder works fine. To convert
2399, to octal,

8)2399 = 299 remainder 7
8) 299 = 37 remainder 3 j5373 = 2399,,

8) 37= 4 remainder5

8) 4

The three microprocessors discussed in this book all use 8-bit values
for operands and lengths of instruction words. (As mentioned previ-
ously, an 8-bit binary number is called a “byte.”) While octal nota-
tion works quite well when speaking of 8-bit values, there is always
the problem of the leftmost digit lacking a bit. That is, the leftmost
octal digit of an 8-bit value will always be 0, 1, 2, or 3. There is also a

0 remainder 4

20

problem when discussing two bytes used in a microcomputer: Should
the conversion be done on two bytes separately, or on the merged
16-bit value? A two-byte or 16-bit value of 1010110110101110,
could be represented by 1266564 or by 2555 and 2564. To effect a
cleaner shorthand notation, base 16, or hexadecimal, is used as an
alternative to octal. To convert a binary number to hexadecimal nota-
tion, separate the number into groups of four bits, starting at the right.
Then change each group of four bits into the corresponding hexadeci-
mal digit. With four bits there can be sixteen combinations of digits.
Just as in the case of the base 11 system, the first can be assigned the
decimal symbols of O through 9, and the remaining six must be as-
signed some other unique symbols. By convention, the combinations
1010, 10115, 1100, 1101, 1110, and 1111, have been assigned the
symbols A, B, C, D, E, and F.

To convert the 6-bit value 1010110110101110, into hexadecimal
notation, divide the number into groups of four, starting from the
right, 1010)1101)1010)1110, and now write down the correspond-
ing hexadecimal digits, ADAEs. The double-dabble method works
quite well on hexadecimal. Converting,

AX16°+D X162+ A X 16'+E x 16 =
10 X 16® + 13 x 162+ 10 X 16* + 14 X 16¢ =
10 X 4096 + 13 X 256 + 10 X 16 + 14 X 1 =
40960 + 3328 + 160 + 14 = 44,462,.

Or, to convert using double-dabble (really a hexa-dabble),

10 X 16 + 13 =173
171 X 16 + 10 = 2778
2778 X 16 + 14 = 44,4621,.

Conversion from a decimal number uses the same divide and save
remainders technique as in binary and octal. To convert 4733, to
hexadecimal notation,

1624733 =295 remainder 13
16) 295 = 18 remainder 7 _
16) 18 1 remainder 2 }27D1s = 473310

16) 1= 0 remainder1

Fractional representation is also possible in octal or hexadecimal,
usually when speaking of floating-point numbers. When octal is used,
the digits to the right of the point represent 81, §-2, 8-3, ., ., 8-
weights, or 14, %4, Y14, Y4094, - . - The weight must still be multiplied
by the value of the octal digit, of course. The octal mixed number
7.1535 represents the integer 7 plus

21

IX Y4+ 5 X Y5y + 3 X V505=5%10+ 4% + %12
= 10‘/:,12 =.208... 10-

In this case, and in many cases, an exact conversion cannot be made,
and some significance is lost in the low-order digits.

The hexadecimal mixed number A.4F,; represents the integer 104,
plus

%56+ 56 = "ase = 0.3084.

Here the positions to the right of the point represent ¥4, Yo56, Y4096,
and so forth.

Either octal or hexadecimal is a good way to shorten long strings of
binary digits. In most cases the notation to be used is dependent on
the microcomputer being used. Manufacturers are about equally di-
vided on use of octal or hexadecimal, and it certainly shouldn’t be a
factor in choosing a microcomputer system. In addition, the reader
could do a lot of programming and never encounter fractional repre-
sentation. After all, what’s the meaning of .875 gflark?

22

CHAPTER

3

Microcomputer
Arithmetic Operations

Microcomputer arithmetic, unlike that of larger computer systems,
is generally carried out in 8-bit, or one-byte, segments. Now the maxi-
mum value possible in # bits is 2* — 1, or for this case 255,,. This
does not mean that the microcomputer is incapable of working with
larger numbers, any more than a larger computer working in 16 bits
would be limited to 2% — 1, or 65,535,,. The double-precision and
multiple-precision techniques to enable microcomputers to work in
larger integer values are covered in Part 3. For the time being, we’ll
discuss arithmetic in 8-bit segments, since the same rules apply to
larger segments, and since this is the actual implementation in all of
the microcomputers covered in this book.

The 8-bit segment that we’re calling a byte is usually represented in
a microcomputer as a fixed-length word appearing as a field of eight
evenly spaced bit positions. The bit positions are usually, but not
always, numbered 7 through O from left to right. Sometimes, because
each manufacturer loves to reinvent the wheel, the reverse is true—the
bit positions are numbered O through 7, left to right. The correct nota-
tion will be left to the reader to decide, but in general discussions the
former notation will be used, since it corresponds to the powers of two
represented by the bit positions.

Bit Position 7 _6 5 4 3 2 1

[TLITTL]

The 8 bits in some cases can represent an absolute value of binary
00000000 to 11111111, or O through 255,,. This is an unsigned nota-

23

tion and is used quite frequently in microcomputers to represent un-
signed integer values such as counting the number of times a portion
of the program is executed, or holding values that can never be nega-
tive.

In many cases, however, it is necessary to represent negative values,
not only to facilitate microcomputer operations, but because data in
the microcomputer emulates the real world. There are certainly nega-
tive-valued amounts in the real world, if the author’s checking account
balance is any indication. Various schemes have been used to repre-
sent negative numbers in electronic hardware, but the one in common
use in almost all computing systems today, and certainly in use in
the microcomputers discussed here, is two’s-complement notation. In
two’s-complement notation the most significant bit, bit 7, is used to
represent a positive or negative sign. If bit 7 is a 0, then the number
is a positive number and is represented by the value of bits 6 through
0. Note that the maximum positive number that can now be held in a
signed 8-bit value is 27 — 1, or +127,.

If the sign bit, bit 7, is a 1, then the number represented in bits 6
through O is a negative number. However, some adjustment must first
be made to that value in bits 6 through O to find the actual number
represented. To find the actual value represented, take the 8-bit value,
change all the 1 bits to 0, change all the O bits to 1, and add 1. If, for
instance, the 8-bit value is 10110100., the sign bit is a 1, indicating a
negative number. The number is two’s complemented by reversing all
bits

10110100
! change
01001011

and by then adding one to the result

01001011
+1

The seven bits in bit positions 6 through 0 can now be converted to
their decimal equivalent of 76, and a minus sign added to yield —764,
= 10110100,. Note that the binary addition proceeded just as decimal
addition is accomplished. A binary 1 added to a binary 1 produces a
0 and a carry. The carry is added to the next bit position which holds
a 1. One and one again are a zero and a carry. The carry added to the
next bit of O produces a 1 with no carry. The rules for binary addition
are straightforward:

0 0 1 1
40 +1 +0 +1

0 1 1 10

24

The two’s-complement form is a little strange at first, but is very
easy to work with. Why use two’s complement? Two’s complement
is used to make the hardware implementation in the microcomputer
less complicated as will be demonstrated a little later on in this
chapter.

Let’s try a few more examples of signed notation. If the binary
number is 00011111, then the sign bit is a 0, indicating a positive
number. Bits 6 through 0 are 0011111,, or a decimal 31. The num-
ber is decimal +31. If the binary number is 10001000s, then it is a
negative number, as the sign bit is a one. Converting,

10001000

i} change
01110111
+1

01111000 = 120, add sign = —120.

The largest positive number in a signed 8-bit value is +127, repre-
sented by 01111111,, but what is the largest negative value? A nega-
tive value of —127 sounds suspiciously close. A negative 127 can be
found by two’s complementing +127 as follows:

01111111

J change
10000000
+1

10000001, = —127.

But what about the signed value of 10000000.? Two’s complementing
this value

10000000

l change
01111111
+1

10000000

produces the original value. GODFREY DANIEL! Since 100000001,
= —127, 10000000, = —127 + (—1) = —128. Thus, while the maxi-
mum positive number that can be held in an 8-bit signed number is
+127, the maximum negative number that can be held is —128! Two’s
complementing —128 produced an overflow condition in the sign bit
position. Overflow is, of course, possible for the result of other addi-
tions and subtractions, as will be shown shortly. The following list
shows the complete range of numbers that can be held in 8 bits with
sign, and two’s complement format.

25

01111111 +127

=3

01000000 +64

00000100 +4
00000011 +3
00000010 +2
00000001 +1
00000000 +0

11111111 -1
11111110 -2
11111101 -3
11111100 —4
11000000 —64
10000000 —128

The rules for binary addition have already been given. Binary sub-
traction is similar:

0 0 1 1

-0 -1 -0 -1

0 BI 1 0
A borrow is generated when a binary 1 is subtracted from a zero. The
borrow is analogous to the decimal borrow and may be propagated
along a whole series of bit positions. Although we’ve seen the rules for
binary subtraction, the way numbers are subtracted in microcomputers
is by addition of two two’s-complement numbers; a subtract instruc-
tion actually performs a two’s complement of the subtrahend and then

adds the two two’s-complemented numbers.

Let’s see how this works. There are really only four cases to con-
sider in either addition or subtraction. Subtracting a positive number is
the same as addition of a negative number, while subtracting a nega-
tive number is the same as addition of a positive number. The minuend
(the number on the bottom) or augend (the number on the top) can
be either a positive or negative two’s-complement number.

Addition of a positive number to a positive number is shown by
addition of 01101111 to 00000011:

01101111 +111
00000011 + 3

01110010 +114

Note that here it is possible to add three ones in one bit position, pro-
during a one and a carry to the next higher bit position. Overflow oc-

26

curs when the sum is greater than +127. In the overflow case, the sign
bit always flips to a one, as in the addition of +64 to +64:

01000000 +64
01000000 +64

10000000 OVERFLOW!

Addition of a negative number to a positive number (two cases) is
shown by the addition of 10000011 to 01111000.

01111000 +120
10000011 —125

11111011 - 5
Overflow is not possible in this case.

Addition of two negative numbers is shown by the addition of
11111010 to 11110000:

11111010 -6
11110000 —16
11101010 ~22

Here again overflow is possible when the result exceeds —128;,. The
addition of —64 and —65, for example, yields

11000000 —64
10111111 —65

01111111 OVERFLOW!

Because overflow comes up frequently in arithmetic operations in
microcomputers, a special overflow flag is provided in the arithmetic
section of the microprocessor. When arithmetic operations are per-
formed, the flag can be tested to ascertain whether overflow did indeed
occur. Overflow is usually, but not always, an error condition. It will
be treated again in Part 3.

Another flag that is provided in microcomputers is the carry flag.
We've seen how carry from one bit position to another can propagate
down two or three or more bit positions. When the carry (or borrow)
propagates past the sign bit position it sets a flag in the microcomputer
to a one. If no carry is produced in an arithmetic operation, the carry
flag is set to a zero. Although a carry is often produced past the sign
bit in additions or subtractions, as in

11111111 —1
00000001 +1
100000000 0 with carry out of sign bit

the main use of the carry flag in microcomputers is in double- and
multiple-precision operations, discussed in Part 3. The carry flag was

27

formerly used to test the results of comparisons of two operands
(essentially subtractions), subtractions, and additions in many other
computers. After the operation, the carry flag could be tested to deter-
mine if the first operand was larger or smaller than the second oper-
and. However, in the microcomputers discussed here, arithmetic oper-
ations usually set flags indicating that the result is zero, positive, or
negative, making testing a great deal more simple. Comparisons of two
operands will be discussed in Part 3.

Word should be given here about addition and subtraction of octal
and hexadecimal numbers. It will probably be necessary to perform
either octal or hexadecimal addition and subtraction depending upon
which your microcomputer uses. Octal and hexadecimal addition and
subtraction operate in the same manner as decimal operations. When
adding two octal or hexadecimal digits, the result is adjusted accord-
ing to the base. If, for example, the octal digits of 7 and 6 are added,
the result is not 13y, but 15,. The result must be mentally adjusted by
telling oneself “the result is 13 decimal, but that equals octal 15, so
I'll write a five and carry to the next higher bit position.” Likewise, in
subtraction a borrow from the next higher bit position borrows not a
decimal 10, but a decimal 8 for octal or 16 for hexadecimal. Subtract-
ing 1F;¢ from 21,4 produces some mental gymnastics such as “F is
really 15, from 1, but I must borrow. Borrowing produces 16 plus 1,
or 17. Fifteen from 17 is 2, so I'll write that down. The borrow has
changed the 2 to 1 and 1 from 1 is 0.”

21 33 decimal
—1F —31 decimal
2 2

Try a few examples, using the number system you’ll be using on your
microcomputer. The results can be verified by converting the operands
to decimal or binary. You’ll be surprised at how rapidly the techniques
are acquired even though you don’t live in an alternate universe with
eight or sixteen digits.

Multiplication and division of binary numbers is probably best han-
dled by converting to decimal first, then doing the operation, and then
reconverting to binary. Since all of the microcomputers discussed here
do not include a multiply or divide instruction in their repertoire, how-
ever, it is necessary to implement a “software” or programmed multi-
ply and divide. These techniques will be covered in Part 3. Multiplica-
tion and division of octal and hexadecimal on paper is best left to
people who collect miles of string and write crank letters to publishers
lamenting the absence of octal and hexadecimal multiply/divide
examples.

Addition, subtraction, multiplication, and division are classified as
arithmetic operations in microcomputers. Another class of operations

28

is termed “logical” operations. This includes the logical AND, logical
OR, and logical XORr.
The logical AND performed on binary numbers has four cases:

0 0 1 1
AND O AND 1 AND O AND 1
0 0 0 1

When two bits are ANDed, a one is produced if and only if both bits
are a one. No carry is ever produced. When an AND is performed on
two 8-bit operands, the results are straightforward.

11010110
AND 01100111

01000110

The logical or performed on binary numbers produces a one if one
or both of the operand bits is a one.

0 0 1 1
OoR O OorR 1 orR 0 OR 1
0 1 1 1

When the oR is performed on two 8-bit operands, the results are just
as straightforward as the anD.

11010110
or 01100111

11110111
The third logical operation, the logical exclusive OR, or XOR, is

similar to the OR, but excludes the case of two one-bits combining to
produce a one.

0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
0 1 1 0
11010110
XORrR 01100111
10110001

The AND and OR operations are frequently used in microcomputers
to manipulate data. The XoR is rarely used in comparison. Examples
of all three are provided in Part 3, Chapter 21.

29

CHAPTER

4

Basic Computer Operations

The birth of the computer age with machines similar to ENIAC
was prompted by the need to solve complex mathematical problems
rapidly-—that is, relatively rapidly: hours or days rather than several
man-years. The operations that early machines could perform were
reduced to simple functions such as add and subtract primarily be-
cause of the complexity of the hardware needed to implement these
operations. Currently we have somewhat the opposite approach
with the introduction and continued development of pocket calcula-
tors. Many of these pocket calculators are extremely powerful in the
types of operations they perform with a single button push, for exam-
ple, finding the sine of an angle or a present worth factor. These
are functions that are essentially the basic instructions of the calcu-
lator themselves and are integrated within the hardware of the device.

Microcomputer functions follow traditional computer functions,
rather than implementing dedicated functions. The functions that the
8080, 6800, and 6502 microprocessors perform are basically subsets
of functions implemented in large computers such as the IBM
360/370 and the Xerox Sigma 7 series. In many cases, however,
the instruction sets of the three microprocessors far outpace the
instruction sets of minicomputers.

Microcomputers also emulate the hardware architecture of larger
computers and minicomputers. Although generally less sophisticated
than the larger machines, they approach or, in some cases, exceed
the capabilities of minicomputers in the number of central processing
unit registers, stack capability, and addressing ease.

One of the chief differences between microcomputers and their
large counterparts is in the size of data values that the former can

30

handle. Microcomputers generally handle data in 8-bit or byte slices,
whereas the larger minicomputers usually operate in 16-bit slices, and
the “midi” and “maxi” computers work in 32-bit or even larger slices.
The second major difference between microcomputers and the larger
computers is in speed of operation. Microcomputers operate at much
slower clock rates than larger machines. This, coupled with the
smaller data slices and consequent need for more processing, result
in effective operational rates 10 times slower for microcomputers than
for most minicomputers, and even as much as 100 times slower
than very large machines.

As the integration technology advances, though, microprocessors
will expand to larger data widths, larger instruction sets, and faster
speeds. Even now, many minicomputer manufacturers are actually
producing a “micro-mini,” with an LSI chip implementing the instruc-
tion set and architecture of its earlier minicomputers. This process
will probably continue until the differences between micros, minis,
midis, maxis, and the very large computers become less and less.

Microcomputers based on the 8080, 6800, and 6502 are very
similar in architecture, or layout. The central part of the micro-
computer is the microprocessor chip itself, which implements the
classic cpu, or central processing unit, functions. Those cpu func-
tions are arithmetic operations, timing and control, high-speed storage,
and, breaking with traditional minicomputers, stack operations.

The arithmetic, logical, shifting, and other data manipulations are
performed in the cpu by an arithmetic and logical unit that essen-
tially performs operations on two 8-bit operands. The results of the
operations set various flags, such as the carry and overflow flags
previously discussed.

Timing and control functions control the implementation of the in-
structions in the microcomputer. The implementation of each instruc-
tion in the microcomputer, such as an ADD, is composed of several
minor parts called cycles. Each cycle is made up of clock pulses at
some basic clock rate such as 0.5 millionth of a second (500 nano-
seconds or 0.5 microsecond). Instruction implementation can be
stopped under certain circumstances.

High-speed storage consists of two or more cpu registers which are
each capable of holding an 8-bit operand. Since the registers are an
integral part of the cpu microprocessor chip, access to them is much
faster than to external memory. Typically they hold intermediate
results during computation.

Stack operations consist of another register which points to a loca-
tion in external memory which is the current stack location. The
external stack is nothing more than a dedicated set of locations in
memory to store temporarily the contents of the registers or other
data under certain conditions.

31

External memory is functionally and physically separate from the
cpu. Memory is composed of from 1024 to 65,536 locations. (Each
group of 1024 locations is described by the designation K, so that
1024 to 65,536 locations can also be called 1K to 64K locations.)
Each location is a cell in a semiconductor memory and is 8 bits long.
Each memory location has a unique address of a numerical value
from O to 64K, and is addressed in that fashion, over a set of 16
lines called the address bus. Sixteen lines enable 216 or 64K unique
addresses. Data is transferred from the cpu to and from memory by
an 8-bit data bus.

The cpu also interfaces to device controllers which control data
transfers to and from input/output devices and the cpu registers.
Each input/output device has a unique address and can be addressed
by the cpu to transfer data in either direction along the data bus.
The address lines also are routed to the device controllers as addresses
of both memory locations and 1/O devices share the address bus.
I/0 devices such as Teletypes, paper tape equipment, magnetic tape
equipment, and magnetic discs enable the microcomputer to com-
municate to the external world.

In addition to transfers of data to and from the cpu to the device
controllers, data can be transferred from the device controllers di-
rectly to and from memory via a direct memory access channel, or
DMA channel. Whereas the transfers via cpu registers are 8-bit
transfers, the DMA permits blocks of data to be transferred without
cpu intervention. The device controller accomplishes this by signal-
ing the cpu to stop execution of the current instruction, transfers a
byte of data from the block, and then allows the cpu to continue.
This interruption, or “cycle stealing,” occurs as often as the device
controller requires. The data transfer rate depends on the speed of the
I/0 device itself, which varies from ten bytes per second for Teletypes
to 30,000 bytes per second and beyond for disc equipment.

The data represented by the contents of the external memory falls
into two groups: instructions to the computer (the program) and
data. “Data” represents the data to be processed or constants and
variables to be used in processing the data. The various formats
of this data will be covered in the next chapter. Instructions to the
computer are organized in 8-bit lengths. Depending upon the type
of the instruction, the length may be one byte, two bytes, or three
bytes long. The convenient instruction lengths are used for obvious
reasons, of course. It would not be an easy task to design a machine
that worked with 13-bit instruction lengths. (Digital design engineers
almost always have two, four, or eight children, never three, five, or
seven.)

When an instruction refers to data in external memory, it must
reference one of the memory locations by its unique number. In

32

general, since there may be 64K of external memory, 16 bits would
be required to contain the memory address. In three-byte instructions,
then, two bytes would be devoted to the memory address. An exam-
ple of this type of instruction would be the 8080 STA instruction
which takes the contents of one of the cpu registers, the “A” register
(STA is Store A), and stores it into the specified memory address.
The three bytes for this instruction would look like this:

00110010 Byte 1-—Code for STA
XXXXXXXX Bytes 2 and 3—Memory address
XXXXXXXX 0 through 65,535

In general, two-byte instructions consist of 8 bits of code for the
instruction type, and a second 8 bits of operand. The first 8 bits, as
in the STA example, specifies an operation code, or op code. Since
there may be 256;, unique op codes in 8 bits, there is a possibility
of up to this number of instruction types, although neither the 8080,
6800, or 6502 chips utilize all 256 codes. The second byte of a two-
byte instruction may specify a special form of an external memory
address, or data within the instruction itself. The 6800 instruction
ANDA #10 performs a logical AND upon the contents of the A cpu
register and the second operand within the instruction itself, a decimal
10, and appears as

10000100 Byte 1-—Code for aAND
00001010 Byte 2—Operand of 104,

The special form of the memory address is discussed in Part 2, which
discusses each of the instructions for the 8080, 6800, and 6502.

One-byte instructions have only 8 bits of operation code and no
operand. This type of instruction is sometimes called inherent or im-
plied since the action to be taken by the instruction needs no addi-
tional operand or memory address. The 6502 instruction INX, or In-
crement X, takes the contents of one of the cpu registers, the X
register, adds one to the contents, and stores the result back into the
X register. It looks like this:

11101000 Byte 1—Code for INX

To provide an example of how the microcomputer would run
a program, assume that in external memory there is a short program
to find the sine of a number. The program is located at memory
locations 10005 through 1040s, and consists of instructions to per-
form the iterative sine calculation and data. Program execution starts
at location 10005, specified by the programmer manually loading the
starting address into a cpu register called the program counter, or P
counter. When the RUN button is pushed, the microcomputer fetches
the instruction from location 10005. How does it know that this is an

33

instruction, and not data? It doesn’t, and if it erroneously attempts
to execute data rather than an instruction, indeterminate results
occur, ranging from disappointment to launching 17 ICBMs, depend-
ing upon the system involved. Assuming that the starting address was
specified correctly, the cpu fetches the first byte from memory. It
knows that this must be an op code because the cpu is in the “fetch”
portion of the several cycles needed to implement the instruction.
The cpu then decodes the op code. If it is a one-byte instruction
it takes several more clock cycles to perform the action specified, such
as decrementing one of the cpu registers. This is essentially the execu-
tion portion of the instruction implementation. If the instruction is
a two-byte instruction of the immediate type, such as the AND pre-
viously discussed, a request is made to external memory to get the
second byte of the instruction. When this has been read in on the
next cycle, or set of clock cycles, the cpu uses the operand to finish
execution of the instruction. If the instruction is a three-byte instruc-
tion, the cpu reads in two more bytes of address over several more
clock cycles from external memory. When the two bytes have been
read the cpu now has the memory address required and makes a fourth
memory call to pass one byte of operand to the cpu or from the cpu.
In the simplest case this would be storing data from a cpu register into
memory or vice versa. In another case, the data byte might be used
to perform an addition or logical operation upon the contents of the
cpu register.

At the end of instruction execution, which has taken several cycles
and from one to four memory accesses, the cpu has reset its internal
logic to fetch, and is prepared to fetch the next operation code. Some-
where in the execution of the current instruction the cpu has adjusted
the P counter from 10005 to 100Xs. If the instruction just executed
was a one-, two-, or three-byte instruction, X would be 1, 2, or 3,
respectively. The next operation code is then fetched, and the process
is repeated for the next instruction. The only exception to this serial
execution of variable-length instructions occurs when a jump or
branch type of instruction is encountered. If there were no provision
for altering the sequence of execution of the program, many recur-
sive or iterative types of programs would not be possible. Even the
simplest programming problem must have some way to terminate
its operation, and to jump to other parts of the program. A jump or
branch jumps to another portion of the same or different program
either unconditionally or upon the detection of some condition, as
for example overflow. Execution of this type of instruction results
in the P counter being loaded by two bytes, specifying the new address
for the next instruction to be executed.

When the sine program has been executed and completed, the last
instruction might very well be at location 1040s. This may be a halt

34

type of instruction, which would halt the microcomputer to allow
investigation of the result, which could be contained in cpu registers
or in some dedicated location in memory. During the course of the
program many different types and lengths of instructions would have
been executed, including arithmetic, logical, and conditional and un-
conditional branch operations. Many memory accesses to external
memory would have been made by the cpu, both for operation codes
and for operands. More detailed descriptions of instruction execution
will be given in Part 2, but all microcomputers discussed here operate
as in the example given above.

35

CHAPTER

5

Data Codes Within
Microcomputers

The operation codes discussed in the previous chapter are just one
type of codes within microcomputers. They are unique codes that
are intimately tied to the microprocessor itself. Most other data codes,
however, have no relationship to the microcomputer in which they
are used. They are codes that have been standardized to represent
certain external world actions, such as printing a specific alphanumeric
character, or are nonstandard codes peculiar to one I/O device,
such as the IBM Selectric typewriter.

The codes discussed in this chapter are the binary-coded-decimal,
or bed, code, the Baudot code, ASCII and EBCDIC code, and the
Gray code. All are unrelated to the hardware of the microcomputer,
with the exception of the first, the binary-coded-decimal code.

The bed code is a 4-bit representation of the decimal digits O
through 9. A 4-bit bed code is exactly identical with the binary
representation, that is

0000 =0 0110 =6
0001 =1 o111 =7
0010 =2 1000 = 8
0011 =3 1001 =9
0100 = 4
0101 =S5

The difference between bed and binary occurs when more than one
decimal digit is to be expressed. When two or more decimal digits
are to be expressed, each 4-bit field represents one bcd digit. To find
the bed values for an n-bit number, one starts from the right and

36

divides the string of n bits into groups of four bits. The conversion
is then made to decimal digits by considering each group of four
bits at a time. The 16-bit number 0001001010010101., for example,
can be converted to its equivalent bed value as follows:

0001)0010)1001)0101
1 2 9 5 = 129510

Note that the binary number represented by 0001001010010101., is
not 1295, but 4757,,. Note also that a 4-bit bed number of 1010,
1011, 1100, 1101, 1110, and 1111 is invalid. The value of the 8-bit
bed-encoded number 10001010, would be a digit of 8, followed by
1010,, which has no equivalent bed value.

Arithmetic manipulations of bcd values are possible. One can
add, subtract, multiply, and divide bcd numbers in either software
or hardware. As a matter of fact, many early computers operated
in bed format, and numbers were added and subtracted in bed within
the arithmetic units of the cpu. Because storage of binary values is
much more efficient than storage of bed values, the switch was made
some time ago to straight binary representation. The maximum pos-
sible value in bed format in 16 bits is 9999, which is only one-sixth
as efficient as binary representation in the same 16 bits.

Consider the addition and subtraction of two bed values. If a binary
arithmetic unit is to properly add two 2-digit bed values such as 461,
and 66y, certain adjustments must be made to the “adder” of the
arithmetic unit to enable it to properly add bed digits. The values
4649 and 66, in bed format would be added as follows in a binary
adder:

01000110
01100110

16101100

This number is not a valid bed number as both bed digits, 1010 and
1100, are invalid. The correct answer should have been

01000110
01100110
C

00010010

where C represents the carry to the next group of bed digits. What
adjustment must be made to the binary result to produce the proper
bed sum? It turns out that if the sum of any group of four bits exceeds
10015, or decimal 9, the proper result is obtained by the addition
of a decimal 6, or 0110, to the 4-bit binary answer. This is done
working from right to left with each 4-bit result. For example, in the
first 4-bit group of the binary addition 0110, must be added to 1100,
since 1100, is greater than 1001,. When this is done, the result is

37

1100
0110

C 0010

which is the proper bed result of 2 with a carry. When the carry is
added to the next group of four bits, the result is 1011,. Since this is
greater than 1001,, the addition of 0110, adjustment is made,
producing

1011
0110
™ o001
which is the proper result, a bed digit of 1 and a carry. A similar
adjustment must be made for bed subtraction; here a decimal 6 must
be subtracted from the result if the result is greater than 10015.

The reason that the bed code is very much tied in with the micro-
computer hardware is that in all three microprocessors, the 8080,
6800, and 6502, there is a means to perform bed addition and, in
some cases, subtraction. By setting a flag or by performing a certain
instruction the arithmetic unit of the microprocessor acts like a bcd
adder. This will be discussed in more detail in Part 3 and referenced
to each of the three types of microcomputers.

The bed code is probably most used in instrumentation such as
digital voltmeters, frequency meters, and other digital units where
in many cases it is possible to read the values represented under
computer control, provided one has the proper interface, of course.
Bed may also be used to represent data in microcomputer memory,
but this is a rather inefficient way to hold data, as mentioned earlier.

Another code sometimes used in microcomputer I/Q devices is the
Baudot code. The Baudot code is used with some older Teletype
equipment and a few other manufacturers. Since much of this older
equipment is inexpensive the Baudot code is important to those
hobbyists who have the equipment and wish to utilize it or to those
who want to purchase an inexpensive peripheral device.

The Baudot code is a five-level code, which simply means that
five bits are used to represent each character. As we know, five bits
can express 324, characters. Since there are 26 alphabetic characters,
ten numeric characters, and other special characters, there are obvi-
ously not enough bits to provide a unique code for all of the alpha-
numeric and special characters required. The Teletype and other
equipment employing this code utilizes this 5-bit code by using two
of the codes to shift the carriage of the unit. One code is used to
shift the carriage to upper case, the so-called FIGS (figures) code,
and the second code is used to unshift the carriage, the LTRS
(letters) code. A third code is used to return the carriage to the

38

beginning of the line (but not to a new line). Another code is used to
“line feed,” or space the page to the next line.

The remaining codes of the Baudot code are alphabetic, numeric,
and special characters, as shown below.

Letters (LTRS)

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

blank (null)
E

line feed

A

space

S

I

8]

carriage rtn

SPOTWOOUKIESCONSRQATMZ~ R I

gures

<HZ

letters

Figures (FIGS)

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

blank (null)
3
line feed

space

8
7
carriage rtn

R PVO—RCOHFED— T

=h

gures

/

letters

Note that the code seems to follow no logical order. This is true
in many codes and makes conversion from one code to another pos-
sible only by cross-referencing a character of the source code to a char-
acter of the destination code in a table. Here the table might consist of
64 entries representing the binary numbers 000000 through 111111.
The most significant bit would correspond to the current state of the
carriage shift. A zero would represent LETTERS and a one would

39

denote FIGURES. The remaining five bits would be the five levels of
the Baudot code. Each of the 64 entries in the table would hold an
8-bit value corresponding to the destination code. Conversion would
then be accomplished by taking the Baudot character to be converted,
oRring it with S00000., where S is a 0 or 1 depending upon the state
of the shift, and looking up the corresponding destination code in
the table.

The most commonly used code for microcomputers and almost
all non-IBM computers is the ASCII code. The ASCII code is a
7-bit code and can therefore represent 128 different alphabetic,
numeric, and special characters. ASCII is a “standard” code devel-
oped as the American Standard Code for Information Interchange
and, much I/O equipment for computers uses this code for com-
munication between the computer and I/O device. The newer Tele-
type equipment, character printers, line printers, alphanumeric video
displays, and most character-oriented microcomputer 1/0 equipment
use ASCII. The ASCII codes from 0000000 to 0011111 represent
“control” characters, characters used as special communications char-
acters or to control mechanical features of the I/O device, such as
carriage return. The codes from 0100000 through 1011111 represent
special characters, numeric characters 0 through 9 and upper-case
alphabetic characters, roughly in that order. The remaining codes of
1100000 through 1111111 represent lower-case alphabetic characters
and some special characters.

The most commonly used ASCII characters in microcomputers
would most certainly include the following:

0000000 NUL A null character. Produces blank
tape on a Teletype.

0001010 LF Line feed

0001101 CR Carriage return

0100000 Sp Space or blank

0110000 0 Decimal digits

through

0111001 9

1000001 A Upper-case alphabetic characters
through

1011010 Z

Certain other special characters would also be used depending upon
the type of task being performed. In many cases only 64 characters
are used and the seldom used or unimplemented characters such as
lower-case alphabetic characters are discarded. Table 5-1 gives the
complete ASCII code in octal notation.

As the story goes, what type of code does a 600-pound gorilla
use? Any code he wishes! And so it is with the EBCDIC code used

40

Table 5-1. Seven-Bit ASCHl Code

Octal Octal Octal Octal
Code Char Code Char Code Char Code Char
000 NUL 040 SP 100 @ 140

001 SOH 041 ! 101 A 141 a
002 STX 042 ” 102 B 142 b
003 ETX 043 # 103 C 143 [
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 ’ 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 | 151 i
012 LF 052 * 112 J 152 i
013 vT 053 -+ 113 K 153 k
014 FF 054 114 L 154 l
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 Sl 057 / 117 (¢] 157 o]
020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 u 165 u
026 SYN 066 6 126 V' 166 v
027 ETB 067 7 127 w 167 w
030 CAN 070 8 130 X 170 X
031 EM 071 9 131 Y 171 y
032 suB 072 : 132 b4 172 z
033 ESC 073 ; 133 [173 {
034 FS 074 < 134 AN 174 |
035 GS 075 = 135] 175 }
036 RS 076 > 136 A 176 ~
037 us 077 ? 137 — 177 DEL

by IBM Corporation. EBCDIC is Extended Binary Coded Decimal
Interchange Code and has its roots in earlier IBM equipment. It will
seldom be seen in microcomputers.

Another code type which is sometimes seen in certain types of
I/0 equipment is the Gray code. An example of the use of this code
would be a simple shaft encoder. The binary representation from
0000 to 1111 can be shown pictorially as in Fig. 5-1A, where dark
areas represent a one bit and white areas represent a zero.

By making the dark areas conductive and using a “wiper” to read
the four bits, one can get a 4-bit reading of the position of the wiper.
If the linear encoding is then wrapped around a shaft, the reading
becomes an angular position where each bit represents 360°/16, or
22.5° (Fig. 5-1B).

41

220

- o o
o - o o
—_—o o
—_— e O
O - O =
—_— O =
(=
—_ O e e
O =
—_—

1
0
0
1

oo o -

0}o
11
01
1{0

oo oo
o O o

(A) Rectangular plot.

(B) Angular plot.
Fig. 5-1. Shaft encoder.

The problem with this scheme, however, is that there are certain
positions of the wiper where alignment becomes critical. If the wiper
is slightly misaligned, the reading at the 1000, position could easily
become 0000,! This is an error of 50 percent, which is not tolerable
even for estimating the federal budget. The use of the Gray code is
one way of correcting the problem.

In the Gray code, only one bit at a time changes. It is not pos-
sible, then, to be off by greater than one bit’s resolution, which is an
acceptable error. An example of a reflected Gray code is shown below.
Tt is called a reflected Gray code because the rows are symmetrical
around the center line, except for the most significant bit.

0000 = 0
0001 =1

42

0011
0010
0110
0111
0101
0100

1100
1101
1111
1110

etc.

NN bW

i

= \O C0 |
—_—

I

Although other codes will be encountered in microcomputer pro-
gramming, the codes discussed above are some of the most common.
Binary-coded-decimal lends itself fairly well to the 8-bit orientation
of microcomputers; two bed digits can be packed into each 8-bit
byte. Baudot is usually right justified in the eight bits with the upper
three bits zeros. ASCII is almost suitable for 8-bit bytes—-the most
significant bit is sometimes used as a check bit, or parity bit. With
even parity, this bit is a one if the total of the other seven bits is odd
and a zero if the total is even. Odd parity reverses the condition of the
parity bit. EBCDIC, when used, fits nicely into the 8 bits. Packing
of Gray and other codes depends on the number of bits being handled.
The subject of efficient storage of various types of data is covered in
Part 3.

43

P

unr

PART

Microcomputer
Architecture and
Operation

CHAPTER

6

Microprocessor and
Microcomputer
Architecture

In spite of what the manufacturer’s sales literature says, the 8080,
6800, and 6502 microprocessors are more alike than different. All
three are microprocessors fabricated by n-channel MOS technology,
which more or less defines the packing density and maximum speed
of operation of the LSI device. All three microprocessors have the
same number of pins, 40. The fabrication and size of the integrated-
circuit package are factors that determine what the architecture of
the microprocessor will look like. As a result, the three microproces-
sors all have 8-bit bidirectional data busses, with larger 16-bit address
busses. The remaining pins are divided among the various clock
and control signals that are necessary for the microprocessors to
communicate with external memory and devices. The speed of the
microprocessors is approximately the same, viewed in terms of aver-
age instruction execution times. Currently the average instruction will
execute in 5 or 6 microseconds, allowing 200,000 or so instructions
per second. Even as this book is being written, faster and more com-
pact versions of the three chips are being designed and implemented.

Internally, the microprocessors are also similar. Each has an 8-bit
arithmetic and logic unit to perform operations on two 8-bit operands.
Each has a set of flags, or condition codes, to record the results of
arithmetic operations and define the current system status. Each has
logic implemented to allow the cpu to halt processing while external
direct memory accesses to external memory are made. Program

46

accessible cpu registers or accumulators are also provided, although
the number of each is different. A further similarity is that all three
have one-, two-, or three-byte instructions that perform very similar
operations, although the actual number of instructions differs. Lastly,
all three microprocessors are oriented toward stack operation, and
have a stack register pointing to external memory stack areas; in ad-
dition the instruction sets and interrupt actions make use of the stack
for subroutines and saving the environment. Now let’s look at the
differences by examining each microprocessor’s architecture.

The 8080 architecture is shown in Fig. 6-1. The expected 8-bit
data bus is bidirectional and is used to send data to and from external
memory and I/O devices, 8 bits at a time. The 16-line address bus
addresses external memory only. A control signal is brought up when
an I/0 device address is present on the data bus. Various timing and
control signals are sent to or from the cpu. There are external clock
signals, an interrupt signal with an acknowledge, a signal to hold
processing and an acknowledge, and others.

The arithmetic and logic unit (ALU) is the expected 8 bits wide.
It functions as a binary unit or as a bed adder. A DAA, or Decimal

D7 DO
i Ea e U 1
{)
1 t
1 I
) 1
! DATA BUS !
: BUFFER/LATCH i
| 1
; |

]

! 8-BIT DATABUS !

i

! Y 4 H
A |

INSTRUCTION B c SCRATCHPAD |

ALU DECODING D E REG ISTERS (8 BITS) |

(8 BITS) AND i

brcte S ch 0 TLE |

N i

i ENCODING TACK POINTER } 16 BITS 1
! PROGRAM COUNTER !
: i
i]
H I
| |
! FLAGS TIMING AND i
! CONTROL LOGIC |
! i
| !

¥
TIMING AND Al5 AQ
CONTROL SIGNALS ADDRESS BUS

Fig. 6-1. 8080 architecture.

a7

Adjust A, instruction allows the result of a previous addition to be
adjusted to a bed result. There are five flags associated with instruc-
tion execution. A zero flag (Z) is set if the result of the instruction
is zero. A sign flag (S) is set if the result is negative, and reset if
positive. A parity flag (P) is set to provide even parity after the
instruction has been executed. A carry flag (CY) is set if a carry
or borrow resulted from the high-order bit of the result. An auxiliary
carry (AC) is set by a carry out of bit 3 of the result. The AC is
used to implement the DAA instruction.

The registers in the cpu are divided into “scratchpad registers,”
a stack pointer, and a program counter. The scratchpad registers
are the accumulators used for holding temporary results. Each is 8
bits wide. The primary accumulator is the A register. Many arith-
metic operations can only be performed with the accumulator and
another reg'ster or memory. The remaining registers are divided into
three register pairs: B and C, D and E, and H and L. The H (high)
and L (low) registers are used to address memory for certain types
of instructions. Taken together, they hold a 16-bit memory address.
The original 8008 microprocessor could address memory only through
these registers, and the 8080 is downwards compatible to include the
8008 instruction set as a subset. The other two register pairs may
be used for temporary storage or to hold a memory address to ad-
dress memory, similar to the H and L registers.

The stack pointer is a 16-bit register which is accessible to the
programmer. It holds a memory address which defines the current
stack area. It may be adjusted by the program or automatically as
the stack is used for storage in subroutines or interrupts. The program
counter is the normal 16-bit register which controls program sequence.

Microcomputers built around the 8080 microprocessor are exem-
plified by the MITS Altair 8800 and the IMSAI 8080. Each is
basically a box containing power supply, chassis, and front control
panel with indicator lights and switches. The front control panel
allows a program to be manually entered and executed. Along the
length of the chassis, a bus of one-hundred wires is run. Many of the
signals on the bus correspond logically to the signals coming out
of the 8080 microprocessor, while others are signals generated by
additional logic in the microcomputer. Various printed-circuit mod-
ules plug into connectors which are connected to the bus. The main
module is the cpu module, which contains the 8080 microprocessor
chip and other necessary logic. The 8080 requires more supplemental
logic than the 6800 and 6502, and so the cpu board contains clock
circuitry and decoding logic.

Memory modules consist of RAM (random access memory) and
the associated circuitry to decode the memory address for the module
and to interface to the cpu. Memory module sizes of 4K, 8K, and

48

now 16K are common. Additional modules may contain PROM
(programmable read-only memory) set up in similar fashion.

In addition to the cpu and memory modules, modules are available
for various modes of 1/O (serial, parallel) and for different types of
I/O devices. The basic microcomputer probably contains a cpu
board and some minimum RAM memory, but may be expanded to
many more memory and device interfaces by adding additional plug-in
modules.

The 6800 microprocessor and microcomputers built around the
6800 take a somewhat different approach. The 6800 microprocessor
is shown in Fig. 6-2. Again, there is an 8-bit data bus, which is used
to transfer data to and from the cpu registers, and a 16-line address
bus. The address bus in this case, however, is used to address both
memory and I/O devices. There are no separate I/O instructions.
An 1/0 device is addressed in the same way that a memory address
is specified, by a 16-bit address that is present on the address bus.
This means that not all of the 64K addresses available can be external
memory; at least a small block must be reserved for I/O device
addresses.

Internally, the ALU is 8 bits wide and operates in binary mode
or, by a special DAA instruction, in bed addition mode. Flags affected
by instruction execution are the H, I, N, Z, V, and C flags. Flag H

BIDIRECTIONAL DATA BUS

07 00
e i
L 8-BIT DATABUS |
1 1
1 i
; |
i i
: INSTRUCTION i
| ALU DECODING ACCA | ACCB | } 8-BIT ACCUMULATORS !
; (8 BITS) oot INDEX REGISTER (IX] |
E ENCODING STACK POINTER (SP)| 1'16-81T REGISTERS |
| PROGRAM COUNTER| !
I 1
i i
] i

W[N [Z]v]c '
| Ll ifnfzlvicl TIMING AND :
; FLAGS CONTROL LOGIC |
1 |
I 1
I I
OSSR S SN A R 4

TIMING, PROCESSOR ALs A0

CONTROL, AND ADDRESS BUS
BUS CONTROL SIGNALS

Fig. 6-2. MC6800 architecture.

49

is a “half-carry” and is used for bed addition. Flag I is the interrupt
mask used to enable or disable external interrupts. If the flag is set,
an external interrupt is not recognized by the microprocessor. Flag
N is a negative flag, set whenever the result of an instruction execu-
tion is negative, and reset if the result is positive. Flag Z is similarly
used for a zero result. Flag V is an overflow flag, set if arithmetic
overflow occurred in the result. Flag C is the main carry flag.

There are two accumulators in the 6800, designated accumulator
A and accumulator B, each 8 bits in length. All instructions can
operate on data in either accumulator in general. The third register
in the cpu is a 16-bit index register, used in computing the memory
address. Memory may be addressed by direct means, where the
memory address is specified in the instruction itself, or the index
register may contain the necessary memory address. (Memory ad-
dressing is further explained in Chapter 7.) A 16-bit stack pointer
defines the memory stack in the same fashion as the 8080 stack.
Here again the stack is used for subroutine storage and interrupt
storage of the environment. The last cpu register is a 16-bit program
counter.

Microcomputers built around the 6800 are best illustrated by the
Southwest Technical Products 6800 or Sphere 300 series. These
microcomputers illustrate another type of construction philosophy,
namely the box without a control panel. Internally the basic box is
similar to the MITS 8800 type. There is a power supply, chassis, and
bus, or perhaps a mother board with some limitation on the number
of plug-in module sockets. Externally, there is no control panel, but
only an on/off switch and a reset switch. The reset switch transfers
control to a monitor program which simulates the functions of a
control panel. Locations in memory can be examined, changed, pro-
grams may be loaded from Teletype, and other functions may be
performed. The monitor program is permanently stored in ROM
(read-only memory).

Here, as in the box with control panel, the cpu is contained on a
module with necessary associated logic, and different types of mem-
ory modules are available, together with I/O interfaces and devices.
Incidentally, there is really no relation to the design philosophy of
the microcomputer and the microprocessor involved. Any of the
three microprocessors might be designed in any microcomputer con-
figuration. For example, MITS has a 6800-based microcomputer with
a front panel. At this time, however, microcomputer designs seem
to be related to the microprocessor. Another example of this follows.

The 6502 is a member of MOS Technology’s 650X family. One
of the chips, the 6501, is pin compatible, but not program compatible,
with the 6800. Hardly surprising, then, that the 6502 is similar to
the 6800.

50

1 et sttty i
|]
: 8-BIT DATA BUS |
)
i]
]
f 8-BIT ACCUMULATOR |
H I
|]
; INSTRUCTION 8-BIT INDEX REG ISTERS !
: S?BLIUIS DECODING / |
| AND !
| 8 INARY DECIMAL CYCLE A) X ’/ 9-BIT STACK POINTER 5
i ENCODING Y S !
! PROGRAM COUNTER}--16 BITS !
]
1]
i 7 0 E
Copvdvl sioli]zic |
:LIII Li]z]c] TIMING AND |
i FLAGS CONTROL LOGIC i
| !
|]
|]
e e e e !
TIMING, PROCESSOR ABI5 ABO
CONTROL, AND ADDRESS BUS
BUS SIGNALS

Fig. 6-3. MCS6502 architecture.

As Fig. 6-3 shows, there are the usual 8-bit data and 16-bit
address busses. As in the case of the 6800, there are no separate
I/0 instructions, and 1/O addresses are sent to the I/O device con-
trollers along the address bus. The ALU is an 8-bit ALU with decimal
mode capability. There are seven flags associated with the ALU and
control circuitry of the microprocessor. Flags N, V, Z, and C are
negative, overflow, zero, and carry flags, respectively, and are set
or reset on the proper condition after instruction execution. The B
flag is set after a special instruction called BRK is executed. The
BRK instruction provides a software interrupt. An I flag is used as
in the 6800, to enable or disable external interrupts. The last flag,
the D flag, sets “decimal mode,” which enables the ALU to do bed
arithmetic.

Rather than two accumulators as in the 6800, the 6502 has only
one accumulator and two index registers. The accumulator, of course,
is 8 bits in length, but each index register is also 8 bits long. This
means that each index register cannot hold a complete memory
address. Use of the index register is still almost as convenient, as is
demonstrated in Chapter 16. The stack register in the 6502 is also
8 bits long. The cpu appends a higher-order bit to make a nine-bit
value. This means that the stack area is located in external memory
locations 100000000, through 111111111,. Although at first glance

51

this imposes a questionable limit on the stack area, 256 locations are
adequate for most applications. The remaining cpu register is the
redoubtable program counter, 16 bits long.

The third type of microcomputer design is illustrated by micro-
computers on a board using the 6502. Two of these types are the
MOS Technology KIM-1 and the Apple I Computer. In both of these
designs, the 6502 microprocessor bus is kept more or less intact
without adding additional signals. The microcomputer is a completely
functioning microcomputer on a board, without power supply, chassis,
or control panel. Here, as in the box without control panel, the
microcomputer contains a monitor program in ROM, which serves
as a means to enter programs, modify locations, and other control
panel functions. In addition, a complete interface for an audio
cassette tape unit is provided, along with on-board RAM memory.
In the KIM-1, a hexadecimal keyboard is built on the board to
allow the user to manually enter programs and as an interface to
the monitor. The Apple requires an external keyboard, but provides
a complete television interface which can be used on home televisions.

In both cases, the manufacturer has provided a complete micro-
computer on a board, stressing not the expandability, but the useful-
ness of it as it stands, although additional memory and I/O devices
may be added.

52

CHAPTER

7

Microcomputer
Addressing Modes

Many programmers, the author suspects, are waiting for that Star
Trek rerun in which the U.S.S. Enterprise is engaged in hot combat
with the Klingons. Heavy damage is sustained by the Enterprise, and
Damage Control reports that one of the primary battle computers has
had a portion of the battle program clobbered. A quick fix is possible,
but Scotty is bemused. “Let’s see, is that instruction an inherent, Z
page relative, or immediate? Occh! These computers—there’s no stan-
dardization!” This appears to be the condition with microcomputer in-
struction sets and addressing modes—every manufacturer implements
their instructions a slightly different way and names their addressing
schemes differently. At first glance there seems to be no common-
ality, but upon further investigation the similarities become apparent.

Why have different addressing modes at all? The reason for this is
primarily that the cpu can be told in one byte to perform instruction
n, but that it takes three bytes for the next instruction. To save mem-
ory storage and to decrease execution times, a number of addressing
modes are implemented in all three microprocessors and in the result-
ing microcomputers which are built around them.

One of the simplest addressing modes is what Intel calls one-byte,
Motorola calls inherent, and MOS Technology calls accumulator or
implied. They all amount to the same thing—-a one-byte instruction in
which the cpu makes only one memory access, to fetch the one-byte
operation code itself. Some examples of this type of instruction follow.
The 8080 instruction ANA R takes the contents of register R and the
contents of register A, ANDs the two operands, and puts the result in
the A register. Note that the two operands were already in two cpu

53

registers, and no memory access had to be made to fetch one or two
operands. The 8080 instruction CMC complements the C, or carry,
flag. Both instructions are one byte long.

ANA B = 10100000
CMC = 00111111

There are, however, 8080 instructions that are one byte long that re-
sult in further memory accesses; these are discussed under indexing.
The 6800 instruction ASL, or arithmetic shift left, is another instruc-
tion of this type when an accumulator is specified. ASL A shifts the
contents of the A accumulator left into the A accumulator and the
carry.

ASLA = 01001000

Likewise, the 6502 instruction INY bumps the contents of the Y ac-
cumulator by one.

INY = 11001000

In all cases for instructions of this type there is enough information in
the operation code of the instruction itself to perform the operation,
and no additional memory accesses have to be made.

A second type of addressing mode which is common to all three
microprocessors is the immediate type of addressing. Here, the oper-
and is contained in byte 2 of the instruction itself or, if 16 bits are
required, in bytes 2 and 3 of the instruction. Hence, one memory ac-
cess is made for the operation code of the instruction, and one or two
additional memory accesses are made for the additional bytes in the in-
struction which specify the operand. An 8080 example of this type of
addressing is the SUI DATA instruction. This instruction takes the
one-byte value DATA from byte 2 of the instruction, subtracts it from
the A register, and places the result in the A register. Another immedi-
ate 8080 instruction is the LXI RP, DATA instruction (load register
pair immediate) which takes the value DATA from bytes 2 and 3 of
the instruction and loads it into the specified register pair.

SUT 15 = 11010110 Byte1 Opcode
00001111 Byte2 154

LXI B, 0260 = 00000001 Byte! Op code
00000100 Byte 2 1260
00000001 Byte3 (<10

The 6800 instruction ANDB #23 is another instruction of this type.
It anDs the contents of the B accumulator with 23,, and places the
result in the B accumulator.

54

ANDB #23 = 11000100 Byte 1 Op code
00010111 Byte2 23

An equivalent 6502 instruction is the AND #23, which performs the
same operation on the single 6502 accumulator.

AND #23 = 00101001 Bytel Op code
00010111 Byte2 23y,

All instructions of this type are two or three bytes long (two bytes
only on the 6502) and require two or three memory accesses.

The third type of memory addressing concerns an instruction in
which a memory address is specified in the instruction. This may be an
instruction to load data into a register, to store data from a register,
to perform an operation with an operand from memory, or to jump
to a specified memory address. Examples of this type of addressing
in the 8080 are the STA and LDA instructions, which store and load
an 8-bit operand into memory and the A register, respectively, and the
JMP instruction, which causes a branch unconditionally to the speci-
fied memory address. The first two instructions are called “direct” by
Intel, and the third is called “indirect,” but in all the second and third
bytes specify a 16-bit memory address.

STA 100 = 00110010 Bytel Op code
01100100 Byte2 |
00000000 Byte 3 | Memory address

LDA 100 = 00111010 Bytel Op code
01100100 Byte2 |
00000000 Byte 3 | Memory address

JMP 100 = 11000011 Bytel Op code
01100100 Byte 2)
00000000 Byte 3 § Memory address

In both the 6800 and the 6502 either an 8-bit or 16-bit memory ad-
dress may be specified. If the address is 8 bits, the memory location
referred to is in the first 256 locations of memory, designated the
zero page. If a 16-bit memory address is specified, then any of 64K
memory locations can be specified. Motorola calls the 8-bit memory
address instruction “direct,” and the 16-bit memory address ‘“ex-
tended”’; MOS Technology calls the 8-bit type “zero page” and the
16-bit type “absolute.” In addition, the 6502 JMP type instructions
are designated “indirect.” Examples of 6800 instructions of this type
are the LDX 100 and the LDX 3000. Both of these load the index
register with the 8-bit value found in a specified memory location. The
first location can be resolved in one byte (page zero) while the next
location takes two bytes.

55

LDX 100

it

11011110 Byte 1 Op code
01100100 Byte2 8-bit memory address
11111110 Byte 1 Op code

00001011 Byte2 |)
10111000 Byte3 § 16-bit memory address

LDX 3000

Il

A similar example in the 6502 is the JMP instruction, which always
appears as a three-byte instruction:

JMP 3000 = 01001100 Bytel Op code

10111000 Byte 2)| .
00001011 Byte 3 § 16-bit memory address

The number of memory accesses in this type of instruction is variable.
If a JMP is performed, only three memory accesses are necessary, to
pick up the three bytes of the instruction. A two-byte page zero in-
struction would require three memory accesses, while a three-byte
memory reference would require four memory accesses, three for the
instruction and one for the data.

The fourth type of addressing is not present in any form in the 8080.
The 6800 and 6502 both call this addressing mode relative, and this
is also the name that many minicomputers use. Relative addressing
computes the effective address by taking the contents of the program
counter, which points to the current instruction, and adding a one-byte
displacement value to it to compute the new memory address. Since
the one-byte value is an 8-bit signed displacement, the effective ad-
dress is (PC)—128 to (PC)-+127, defining an area of 256 locations
around the current setting of the program counter. This area is some-
times known as the floating page, since it floats relative to the program
counter. Both the 6800 and 6502 use the relative instruction type for
only one set of instructions, the conditional branches. Therefore, if
the conditional branch condition is met, the program can jump or
branch anywhere within the floating page. This is really not too much
of a hindrance, since in many cases the next instruction will be some-
where within that area. The 6800 instruction BVS, Branch on Over-
flow Set, and the 6502 instruction BPL, Branch on Plus, are examples
of instructions using this addressing mode. If the conditional branch
were at location 1000, the program counter would be set to point to
the next instruction, at 10024. If a branch was to be made to location
1100g, 64 locations away from the conditional branch, then the in-
structions would appear as

6800 BVS = 00101001 Bytel Opcode
00111110 Byte2 +62;
6502 BPL = 00010000 Byte1 Op code

00111110 Byte2 +624

56

Branches back from the current instruction would be handled in the
same fashion, except that the second byte of the instruction would be
a negative value.

The next type of addressing mode is the indexed mode. An index
register is usually a cpu register that holds an index value which is
used to compute the effective address of the instruction. In the case
of the 6800, this index register is 16 bits long. The 6502 has two reg-
isters that are 8 bits long. The 8080 has the register pairs B, C; D, E;
and H, L, each pair being 16 bits long.

Let’s take the 8080 case first. There are some who would call this
mode of operation in the 8080 an indirect mode rather than indexed
mode, but since the effective address is computed by use of a cpu reg-
ister, the point could be argued. In any case, one of the three sets of
register pairs points to the memory location to be used. The original
(in the 8008) data pointer was the H,L register set, which was used
to make all memory references. Therefore, there are instructions like
the one-byte MOV M,R which moves an 8-bit byte from a cpu regis-
ter to the memory address pointed to by the H,L registers. If the H
and L registers contained 1000, for example, the MOV M,B instruc-
tion would move the contents of the D register to memory location
1000x.

MOV M,D = 01110010

Likewise, the 8008-compatible instruction SUB M, subtract memory
from A, would subtract the contents of the memory location pointed
to by the H and L registers from the accumulator. With the 8080, how-
ever, the B,C and D,E register pairs were also given the capability to
be used as data pointers or index registers. The STAX B, STAX D,
LDAX B, and LDAX D instructions in the 8080 store the contents of
the A register into the location pointed to by register pair B,C or D,E
or load the A register in the same fashion. Although Intel calls these
instructions indirect, the suffix X has been used to denote indexing.
Of instructions using either of the three register pairs, the instructions
using H and L are most common in the 8080.

The 6800 uses its one index register to point to data just as in the
8080 case. In addition, however, the second byte of a two-byte in-
dexed instruction contains a displacement value. The displacement
value is an unsigned value of O through 255, which is added to the
contents of the index register to compute the effective address. Sup-
pose that the 6800 instruction ADDA 20,X were to be executed, an
add to the A accumulator with indexing. If the index register con-
tained 10004, then the effective address would be computed as

(X Register) 1000,
(Displacement) 144
(Effective address) = 10144

i

57

The ADDA 20,X instruction would be present as

ADDA 20,X = 10101011 Bytel Opcode
00010100 Byte2 204

The 6502 uses indexing in identical fashion. The 6502 Z Page X
and Z Page Y addressing modes are nothing more than using one of
the two index registers, X or Y, and the displacement in the second
byte of the instruction. The instructions LDX 100,Y and LDY 100,X
are Z Page Y and Z Page X types, that compute the effective address
by adding the displacement of 100,, to the contents of either the X or
Y index registers, the same as in the 6800, except that the index reg-
isters are 8 bits long. In two other modes of addressing, ABS X and
ABS Y (QOoch! Captain Kirk, I still can’t find the right patch for the
battle computer!), the displacement value is two bytes long. The
effective address is computed exactly the same way, by adding the
displacement value to the contents of one of the index registers. The
6502 instructions SBC 1000,X and SBC 1000,Y, for example, pro-
duce a two-byte displacement as follows:

SBC 1000,X = 11111101 Bytel Opcode
11101000 Byte 2, Displace-
00000011 Byte 3 } ment

SBC 1000,Y 11111001 Byte1 Op code
11101000 Byte 2 } Displace-
00000011 Bvte 3 ment

There are two more addressing modes unique to the 6502, indirect
indexed X and indirect indexed Y. In the former, the effective ad-
dress is obtained by adding the contents of the X index register to the
second byte of the instruction, which holds the displacement value as
before. The result points to a page 0 location whose contents point to
another location to be used as the actual location in the instruction.
The page 0 location considered is actually two consecutive locations,
treated as a 16-bit indirect address. In the second, the indirect address
from page O is picked up first and then the contents of the Y index
register are added to the indirect address to determine the effective
address. Indexed indirect X is pre-indexing while indirect indexed Y
is post-indexing. Examples and use of this will be given in the follow-
ing chapters.

All addressing in the 8080, 6800, and 6502 fall in the six categories
above. While the addressing modes may be confusing at first, use of
them becomes very automatic with some practical experience in pro-
gramming a particular microcomputer. This will be especially true if
the reader is using an assembler program to assemble his symbolic
program, rather than hand assembling code in machine language.

58

Both are proper ways to proceed, but the assembler will automatically
impose the proper addressing modes in the instructions and provide
diagnostic messages when addressing mode errors are made. The use
of the modes in instruction groups is discussed in Chapter 9, where a
cross reference of instruction types and addressing modes is provided.

59

CHAPTER

8

Microcomputer Memory and
Stack Operation

With the advent of inexpensive microprocessors came a parallel
development of inexpensive memory that was just as significant. Not
very long ago one of the primary costs of a computer system or mini-
computer system was the core memory portion. As a result many
systems were purchased for applications with just enough memory to
squeeze in the required programs. (One of the basic axioms in system
design, of course, is that the required applications programs take up
1K more than the memory available. The author has never seen this
rule violated. The result has been either the purchase of additional
memory or trimming the existing programs to fit by eliminating re-
dundant code and other methods similar to the truncation algorithm
of Procrustes.) Today, however, semiconductor memory costs con-
tinue to rapidly fall. The average price per bit of memory at this writ-
ting is less than 4 of a cent. In addition, inexpensive secondary mem-
ories, such as holographic, bubble, and charge-coupled device (CCD)
memories, are being developed or are available that will reduce the
costs of secondary storage significantly.

The result of inexpensive memory development has many implica-
tions. Newer microprocessors will have expanded addressing capabil-
ity, for example. Expansion beyond the 64K addressing range of the
8080, 6800, and 6502 is possible now, but involves switching mem-
ory banks by special instructions and is not an inherent feature of the
microprocessor. Another implication is that the hobbyist will be able
to concentrate upon writing applications programs without too much
regard to making his code space-efficient, that is, taking up as little
memory as possible. The hobbyist will soon be able to afford enough

60

memory to fill his microcomputer to the 64K limit. Let’s take a look at
some of the various configurations of microcomputer memories in
the current 8080, 6800, and 6502 microcomputers and see how they
are laid out and what the addressing restrictions are.

Memory can basically be divided into read-and-write random access
memories (RAM), dedicated read-only memory with manufacturers’
programs “burned into” the memory (PROM or ROM), and erasable
programmable read-only memory, which the user can program and
reprogram (EPROM). All must fit into the 64K addresses of the
microcomputer. In addition, in the 6800 and 6502 a small block of
memory addresses must be reserved for 1I/0 device addresses which
are addressed over the address bus in identical fashion with memory.

If programs such as BASIC are purchased from the manufacturer
in PROM, then they occupy a certain segment of the 64K addresses.
This area becomes inaccessible to the user of the microcomputer for
his own storage. Typically, 1K to 8K blocks of PROM might be used
for dedicated programs such as monitors and interpreters.

The popular EPROM 2708 memory is a PROM which can be pro-
grammed by the user by a PROM programmer. At any time the
EPROM can be erased by exposure to ultraviolet light and can then
be reprogrammed. Each 2708 is 1K bytes in size and would therefore
reduce the 64K addresses by that amount.

This leaves the remaining area to be divided into RAM storage,
and in the case of the 6800 and 6502, 1/0 device addresses. In the
8080 up to 256 I/O device addresses are possible by use of the IN and
OUT instructions which have the following instruction format:

IN =11011011 Opcode
XXXXXXXX Device address

117010011 Opcode
XXXXXXXX Device address

The second byte of the instruction specifies the device address, which
can be O through 255,,. In the 6800 and 6502 an I/0 device is ad-
dressed by a memory reference instructions such as a LDAA in the
6800 or STA in the 6502:

LDAA = 10110110 Opcode
XXXXXXXX I/0 device address

ouT

Il

XXXXXXXX

STA =10001101 Opcode
XXXXXXXX 1/0 device address
XXXXXXXX

In the LDAA case the I/0 device address is sent out over the 16 ad-
dress lines, recognized as the proper I/0O device address by the I/O

61

device controller, and an 8-bit data byte is sent from the 1/O device
to the A accumulator. In the STA case an 8-bit data byte is sent across
the data bus and strobed into the I/O device controller’s register when
it recognizes the device address on the 16 address lines. When a block
of addresses must be dedicated to I1/O devices in this fashion, the
block is usually 1K or so long to simplify address decoding. This
means that there is 1K of memory addresses that must be used for the
1/0 devices in the system and cannot, of course, be used for any type
of memory.

After the PROM, EPROM, and I/O device addresses have been
allocated, the remaining memory addresses may be used for RAM
storage. In the 8080, assignment of RAM, PROM, and EPROM ad-
dresses is not too important. It is convenient to group RAM memory
into one contiguous block, say location 0 through location 17777
and divide any remaining addresses into other memory types grouped
in the same way. In the 6800 and 6502 there are certain hardware
restrictions that determine memory assignment. The most important
of these is that the two microprocessors and the microcomputers built
around them utilize page zero as the portion of memory to be set
aside for special addressing modes. In both the 6800 and 6502, in-
structions referencing page zero are shorter as only one byte of ad-
dress is required. In the case of the 6502, page zero type instructions
are not only shorter but use page zero locations as indirect references
to other locations in memory. Page zero in the 6800 and 6502 (loca-
tions O through FF;¢) will therefore usually be used for RAM storage
except in special hardware. Since it is usually easier to work with con-
tiguous blocks of memory, RAM storage in the 6800 and 6502 micro-
computers will probably occupy locations 0 on up to the limit of
RAM. In addition, the 6502 requires RAM storage for the memory
stack, and that memory stack must be in locations 100, through
1FFs.

The second hardware limitation for all three microprocessors is that
of interrupt address assignment. In the 8080 case, addresses 0, 10, 20,
30, 40, 50, 60, and 70s are used as interrupt vectors for eight vectored
interrupts. These locations must hold instructions related to interrupt
processing if interrupts are to be used in the microcomputer. Since
these instructions are usually loaded with a program, this memory
area should be RAM. In the 6800 and 6502 cases, the interrupts are
handled by reserving locations FFF8-FFFF,¢ as interrupt vectors that
point to the interrupt handling routines for the several types of inter-
rupts that can occur. In microcomputers built around the 6800 and
6502, these locations are usually ROM or PROM along with other
locations in the same memory area that contain a dedicated monitor
program. In general, then, the highest memory addresses in the 6800
and 6502 microcomputers are dedicated ROM memory. Fig. 8-1 illus-

62

INTERRUPT 0 =y 0 0
VECTORS FOR e
8 INTERRUPTS PAGE 0 PAGE 0
00FF 00FF
0100 0100
PAGE 1
STACK
O1FF
0200
RAM RAM, RAM,
OR PROM, PRON,
PROM OR 110 OR 110
MONITOR MONITOR
PROGRAM PROGRAM
FRF8I INTERRUPT FFF8 ™ INTERRUPT
FEEF ¢FFe | VECTORS FEEF L VECTORS
(A) 8080. (B) 6800. (C) 6502.

Fig. 8-1. Nominal memory configurations for 8080, 6800, and 6502 systems.

trates the nominal memory configuration for the three types of micro-
processors.

In each of the microcomputers based on the 8080, 6800, and 6502
a certain portion of the RAM area must be dedicated to the memory
stack. In the 6502 case, the stack area is predefined as locations 100;4
through 1FF,4, providing 2564, bytes of stack area. In the 8080 and
6800 case, the stack area may be anywhere in the RAM area of mem-
ory, and is not limited as far as size. In all cases the stack area is a
LIFO stack, or Last-In First-Out stack. This type of stack can be
compared to a dinner-plate stacker found in restaurants which is peri-
odically filled with dinner plates by busboys as customers take the top
plate for their meal. The first plate taken off was the last one put in.

The stack area is accessible to the programmer and is utilized in a
number of different ways. Firstly, the programmer may push a byte
of data into the stack or as many bytes of data as he wishes. Con-

63

versely, he may pull or pop the last byte of data or several bytes of
data from the stack. There are instructions to either push one byte or
pull or pop one byte at a time from the stack. Used in this way, the
stack is a temporary storage area. The second way the stack area may
be used is in CALLing subroutines in the program. The CALL in-
struction or jump to subroutine or branch to subroutine transfers con-
trol as in an ordinary jump, but at the same time stores the program
counter in the stack. Another instruction at the end of the subroutine
returns from the subroutine and pops the program counter contents
that were pushed into the stack initially. The stack actions taken during
subroutine usage permit subroutine reentrancy (discussed in later
chapters) and generally make things easier for the programmer in
temporarily saving the contents of registers while he uses the registers
in the subroutine. The third way the stack is utilized is by interrupt
processing. As an interrupt occurs, the current location of the program
counter, the state of the flags in the cpu, and certain other cpu registers
are pushed into the stack. This is known as saving the environment and
permits an easy return to the interrupted area of the program after the
interrupt has been processed. The return is made by a special return-
from-interrupt instruction which pops the data off in the same order as
it was pushed into the stack.

The stack pointer always points to the next location in the stack
area to be used by a push, CALL, or incoming interrupt. It is adjusted
as each byte of data is pushed into the stack to point to the next loca-
tion. It is adjusted the opposite direction when data is pulled from the
stack. It is always the programmer’s responsibility to initialize the
stack pointer to point to the “top of stack” and to make certain that
the same amount of data is pulled from the stack as is pushed into the
stack. Were this not the case, the kitchen could conceivably be inun-
dated with dinner plates in a manner reminiscent of The Sorcerer’s
Apprentice. Or, in memory, this could result in stack area overflow
with the stack overflowing into the program area as more data was
put into the stack than was taken out. Specific examples of how the
stack is used are discussed in the following chapters. Chapter 9 covers
stack operation for programmable pushes and pulls and subroutine
use while Chapter 11 covers interrupt stack actions.

64

CHAPTER

9

Microcomputer
Instruction Sets

This chapter covers a subject touched upon in earlier chapters,
the instruction repertoire of each of the three microprocessors covered
in the book. The instruction repertoire of the microprocessor is the
same as the instruction repertoire of the microcomputer built around
it since the instruction set is built into the LSI chip. Differences be-
tween microcomputers based upon the same microprocessor would
never be in instruction implementation, but in the memory configura-
tion, I/O addresses, bus arrangement, and instruction mnemonics
used for the assembler, to mention some obvious areas where micro-
computers would differ.

Just as in the addressing modes, instructions for the three micro-
processors at first appear different, but fall into one of several groups.
Although different sets of instruction groups could be argued, the
groups defined here are the following: '

Instructions that move data

Arithmetic and logical instructions

Shifts

Jumps and branches and jumps and branches to subroutines
Register and memory increments and decrements

Compare and test

Stack pulls and pops

Flag-type instructions

Special instructions

WX BN -

Since the instructions are different between microprocessors, each
of the groups is discussed in general and then specifically for each of

65

the three microprocessors, so that the reader may skip over the micro-
processors with which he is not concerned. A complete set of instruc-
tions based upon the above nine categories is included for each of
the three microprocessors in the appendixes.

GROUP 1 INSTRUCTIONS

Group number 1, instructions that move data, include instructions
that move one byte of data between memory and a cpu register,
instructions that move one byte of data from one cpu register to
another cpu register, instructions that move two bytes of data between
cpu registers, and immediate type instructions that load cpu registers
or memory with immediate values in the instruction itself.

The 8080 Group 1 Instructions

The A accumulator can be loaded from memory by an LDA,
LDAX B, or LDAX D instruction. The first is a direct type of ad-
dressing, while the other two are indexed types using register pairs
B,C or D,E. LHLD loads register pair H,LL directly from memory
location m (into register L) and memory location m-+1 (into register
H). LXI B, LXI D, LXI H, and LXTI SP load a two-byte immediate
value in the instruction into the specified register pair. MVI M and
MVI R move one byte of immediate data into the specified memory
location M or cpu register R, using register pair H,LL as an index
register. MOV M,R, MOV R,M, and MOV RI1,R2 move one byte
of data from R to M, from M to R, or from register R2 to RI1,
respectively. The first two use register pair H,L as an index register.
SHLD stores H,L, directly into memory locations m (L) and m+1
(H). SPHL transfers the contents of H,L to the stack pointer register
SP. STA, STAX B, and STAX D store the contents of the A register
into memory. STAX B and STAX D use register pairs B,C and
D,E as index registers. The XCHG swaps the contents of D,E and
H,L, while XTHL swaps H,L with the current memory locations that
are the top of stack. Location m from the stack is swapped with L
and location m+1 from the stack is swapped with H for XTHL.

The 6800 Group 1 instructions

CLR zeroes a memory location, while CLRA and CLRB clear
the A or B register, respectively. CLR may be indexed or extended
addressing. The accumulators are loaded or stored by LDAA and
LDAB or STAA and STAB, all of which are direct, indexed, or
extended addressing types. TAB and TBA transfer the contents of
the A accumulator to B or vice versa. The index register or stack
pointer register can be loaded or stored by LDX, LDS or STX, STS,
all of which are direct, indexed, or extended addressing types. The

66

index register may be transferred to the stack pointer by the TXS
instruction, while TSX does the opposite. The condition codes, treated
as a register, may be transferred to the A accumulator by TPA.

The 6502 Group 1 Instructions

The accumulator, X register, or Y register may be loaded or
stored from or to memory by LDA, LDX, LDY, STA, STX, and
STY, respectively. LDA, LDX, and LDY may be immediate. The
accumulator, X register, Y register, and stack pointer may be trans-
ferred to another cpu register by the following instructions, where
the second letter represents the source register and the third letter
represents the destination: TAX, TAY, TSX, TXA, TXS, TYA.

GROUP 2 INSTRUCTIONS

Group 2 instructions, arithmetic and logical, are generally instruc-
tions working with two operands and performing adds, subtracts,
ANDS, ORs, exclusive ors, and adds and subtracts with carries. The
condition codes and flags are usually set on the result of the operation.

The 8080 Group 2 Instructions

ACI and ADI add the one-byte immediate operand to the con-
tents of the A register either with the current state of the carry (ACI)
or without (ADI). Likewise, ADC M and ADD M add a memory
operand to the A register with or without carry, and ADC R and
ADD R add the specified other cpu register to the A register with
or without carry. The memory reference instructions use H,L as an
index register. ANA M, ANA R, and ANI perform ANDs on the A
register with a memory operand, cpu register, or immediate value,
respectively. DAA performs the decimal adjust previously explained
on the A register. The contents of register pair B,C, D,E, H,L, or
the stack pointer can be added to the contents of the H,L registers
by instructions INX B, INX D, INX H, or INX SP, respectively.
ORA M, ORA R, and ORI perform logical orRs on the contents
of the A register and a memory operand, cpu register, or immediate
value. The SBB M, SBB R, SBI, SUB M, SUB R, and SUI instruc-
tions perform subtracts with or without borrow in the same fashion as
the corresponding add instructions. XRA M, XRA R, and XRI
perform exclusive ORs on the contents of the A register and a memory,
cpu register, or immediate operand.

The 6800 Group 2 Instructions

An add and subtract of a memory operand or immediate operand
with or without carry can be done by ADDA, ADDB, ADCA, ADCB,
SUBA, SUBB, SBCA, or SBCB. Direct, indexed, or extended ad-

67

dressing modes may be used for the memory operand. The last letter
of the mnemonic stands for the accumulator used. Similarly, an AND,
exclusive OR, or OrR may be performed by ANDA, ANDB, EORA,
EORB, ORAA, or ORAB. In addition, the A and B accumulators
may be added with the result going to the A accumulator by the ABA
instruction. The SBA performs a subtract in the same manner. A
ones’s complement or two’s complement can be performed on the
contents of A, B, or a memory location by COMA, COMB, COM,
NEGA, NEGB, or NEG. Lastly, the decimal adjust operation can
be performed by DAA.

The 6502 Group 2 Instructions

An add or subtract with carry on the contents of the accumulator
and a memory location or immediate operand may be performed by
ADC or SBC. No add or subtract without carry is possible, necessi-
tating clearly" the carry before many adds and setting the carry before
many subtracts. An AND, exclusive OR, and OR can be done with a
memory or immediate operand and the accumulator by AND, EOR,
and ORA.

GROUP 3 INSTRUCTIONS

Group 3 instructions are the shift instructions. There are three
types of shifts: rotates, arithmetic shifts, and logical shifts. Rotates
move the contents of a register or memory location one bit right or
left with the data rotating back into the opposite side of the loca-
tion. In some cases the data is rotated through the carry flag. Logical
shifts move the data one bit right or left with a zero filling the
vacated bit position. The carry flag is usually set by the bit shifted
out. Arithmetic shifts sign extend the sign bit position so that on a
right or left shift the same sign of the operand is preserved.

The 8080 Group 3 Instructions

All shift instructions in the 8080 are rotates. RAR rotates the A
register right through the carry, RAL rotates A left through the
carry, and RLC and RRC simply rotate the A register left or right.
The first two shifts are essentially nine-bit shifts, with the “old”
state of the carry shifting into the vacated bit position, and the bit
shifted out of the register setting the carry. The last two shifts are
8-bit shifts with the bit shifting out of the register rotating around
to the other end, and also affecting the carry.

The 6800 Group 3 Instructions

The A register, B register, or a memory location can be shifted
in rotation left, arithmetically left, or logically right by ROLA, ROLB,

68

ROL, ASLA, ASLB, ASL, LSRA, LSRB, or LSR. When a rotate
is used, the shift is actually nine bits as the carry is used. The “old”
state of the carry replaces the vacated bit position, while the bit
shifted out sets the “new” state of the carry. The arithmetic shifts
set the carry to the state of the sign bit and a zero fills the least
significant bit position. The sign bit is not preserved in this case.
The logical shifts fill the sign bit position with a zero, and the least
significant bit is shifted into the carry.

The 6502 Group 3 Instructions

The accumulator or a memory location can be shifted in rotation
left, arithmetically left, or logically right by ROL, ASL, or LSR.
The ROL instruction rotates through the carry, setting the least
significant bit to the “old” state of the carry and setting the carry
to the sign bit as it is shifted out. The arithmetic shift sets the carry
to the state of the sign bit and a zero fills the least significant bit
position. The logical shift fills the sign bit position with a zero and
the least significant bit is shifted into the carry.

GROUP 4 INSTRUCTIONS

Group 4 instructions include unconditional jumps or branches,
conditional jumps based upon the current settings of cpu flags, sub-
routine calls (conditional and unconditional), and returns from
subroutines.

The 8080 Group 4 Instructions

The JMP instruction unconditionally jumps to the specified mem-
ory address without affecting the stack. Conditional jumps can be
made on the state of the carry, minus, zero, and parity flags. JC,
IM, INC, INZ, JP, JPE, JPO, and JZ are jumps on carry, minus,
no carry, no zero, positive, parity even, parity odd, and zero, respec-
tively. The stack is not affected. CALLs to subroutines may be made
conditionally or unconditionally. When a call is acted upon the
current contents of the program counter are put into the stack,
and the stack pointer register is decremented by two for the two
bytes of the PC. The conditional CALL is CALL while unconditional
CALLs can be made for the same conditions as the jumps—CC,
CM, CNC, CNZ, CP, CPE, CPO, and CZ. At the end of the sub-
routine a return is effected by a RET type instruction, conditional
or unconditional. When the return is made, the first two bytes at top
of stack are put into the PC, causing transfer of control to the ad-
dress after the CALL. The stack pointer is incremented by two.
The unconditional return is RET, while conditional returns are made
by RC, RM, RNC, RNZ, RP, RPE, RPO, and RZ. The last instruc-

69

tion in this group is the PCHL instruction which transfers the con-
tents of the H,L registers to the program counter, essentially an
unconditional jump.

The 6800 Group 4 Instructions

Unconditional branches in the 6800 include the BRA or Branch
Always instruction, which is a relative addressing type only and the
JMP instruction, which is indexed or extended. Conditional branches
not affecting the stack are made on carry clear, carry set, zero, greater
or equal to zero, greater than zero, higher, less than or equal to zero,
lower or same, less than zero, minus, not zero, overflow clear, over-
flow set, or plus—BCC, BCS, BEQ, BGE, BGT, BHI, BLE, BLS,
BLT, BMI, BNE, BVC, BVS, and BPL. All of these are relative
type addressing only. Branch to Subroutine, BSR, and Jump to Sub-
routine, JSR, are identical in their actions except that the former is
relative addressing while the latter is indexed or extended. The con-
tents of the program counter are pushed into the stack and the stack
pointer is decremented by two. A transfer to the subroutine location
is then made. RTS, Return From Subroutine, reverses the procedure,
restoring the contents of the program counter and incrementing the
stack pointer by two.

The 6502 Group 4 Instructions

The 6502 instruction JMP causes an unconditional jump. It can
be absolute or indirect. Relative type conditional branches can be
made by BCC, BCS, BEQ, BMI, BNE, BPL, BVC, and BVS, which
branch on carry equals zero, carry equals one, equal, minus, not zero.
plus, no overflow, and overflow. None of the above affect the stack.
JSR jumps to subroutine while RTS returns from the subroutine. In
the former, the contents of the program counter are pushed into the
stack and the stack pointer decremented by two; in the latter the
PC is loaded from the stack and the stack pointer incremented by two.

GROUP 5 INSTRUCTIONS

Group 5 instructions are, in general, instructions that increment or
decrement registers by one count. This operation is common while
using index registers to count the number of passes through a loop
or to access contiguous memory locations.

The 8080 Group 5 Instructions

Incrementing a memory location or cpu register by one or decre-
menting a memory location or cpu register by one is performed
by INR M, INR R, DCR M, and DCR R. These are increments
and decrements of one register or memory location only. The H,L

70

register is used as an index register in the memory location case.
INX B, INX D, INX H, INX SP, DCX B, DCX D, DCX H, and
DCX SP increment or decrement register pairs B,C, D,E, H,L, or
the stack pointer. These are increments and decrements of 16 bits
at a time.

The 6800 Group 5 Instructions

The A accumulator, B accumulator, or a memory location can be
incremented or decremented by instructions INCA, INCB, INC,
DECA, DECB, and DEC. INC and DEC can be indexed or extended.
The index register or stack pointer can also be decremented or in-
cremented by DEX, DES, INX, and INB.

The 6502 Group 5 Instructions

Index registers X and Y or a memory location can be incremented
or decremented by INX, INY, INC, DEX, DEY, or DEC. The mem-
ory location case can be one of several addressing modes.

GROUP 6 INSTRUCTIONS

Group 6 type instructions compare two operands and set the cpu
flags on the result of the comparison, or test one operand only.

The 8080 Group 6 Instructions

A memory operand, register operand, or immediate operand can
be compared with the contents of the A register by CMP M, CMP R,
or CPI. The H,L registers are used as index register or pointer in
the case of the memory reference instruction.

The 6800 Group 6 Instructions

A memory operand of 8 bits can be compared to the contents
of the A or B accumulator by CMPA or CMPB, which may be any
memory reference addressing mode. The two accumulators may be
compared by CBA. The index register may be compared with a two-
byte memory operand by the CPX instruction, which may be any
memory reference addressing mode. The Bit Test instruction, BITA
or BITB, performs a logical AND on the contents of the specified
accumulator and memory operand and sets the condition codes ac-
cordingly. Neither operand is changed. TST, TSTA, and TSTB test
a memory operand, the A accumulator, or B accumulator for zero or
minus and set the appropriate flags.

The 6502 Group 6 Instructions

A memory operand can be compared to the contents of the ac-
cumulator, X register, or Y register by CMP, CPX, or CPY. The

71

BIT instruction performs a logical AND on the contents of the accumu-
lator and a memory operand and sets the condition codes accordingly.
Neither operand is changed.

GROUP 7 INSTRUCTIONS

Group 7 instructions are used to push or pop from the stack.
Either 8-bit or 16-bit operands may be used. The stack pointer is
adjusted by the appropriate amount as the transfers are made, decre-
menting the stack by one for each byte pushed and incrementing
by one for each byte popped or pulled.

The 8080 Group 7 Instructions

The A register and flags, designated PSW, register pairs B,C, D,E,
or HL can be pushed or popped from the stack by PUSH PSW,
PUSH B, PUSH D, PUSH H, POP PSW, POP B, POP D, and
POP H.

The 6800 Group 7 Instructions

The contents of either the A or B accumulator can be pushed or
pulled from the stack by PSHA, PSHB, PULA, or PULB.

The 6502 Group 7 Instructions

The accumulator can be pushed into or pulled from the stack by
PHA or PLA. The processor status (flags) may be pushed into or
pulled from the stack by PHP or PLP.

GROUP 8 INSTRUCTIONS

Group 8 instructions are instructions that set or reset flags in the
cpu, either prior to performing an arithmetic operation dependent
upon the flag, or to set some condition such as enabling interrupts
in the cpu.

The 8080 Group 8 Instructions

Interrupts are disabled or enabled in the 8080 by the DI and EI
instructions, which reset or set the I flag in the cpu. The only other
flag that can be set or reset is the carry, which is set by an STC
instruction and complemented by a CMC instruction.

The 6800 Group 8 Instructions

The carry flag in the 6800 can be set or reset by an SEC or CLC
instruction. The interrupt mask can be enabled or disabled by an
SEI or CLI instruction. Overflow can be set or cleared by an SEV
or CLV instruction. All of the condition codes in the “condition

72

code register” can be set to the desired configuration by the TAP
instruction, which transfers the contents of the accumulator to the
condition codes.

The 6502 Group 8 Instructions

The C,D (decimal mode), and I flags in the 6502 can be cleared
or set by instructions CLC, CLD, CLI, SEC, SED, and SEI. The
overflow flag can be cleared by CLV.

GROUP 9 INSTRUCTIONS

The remaining instructions fall into none of the above groups.
They are generally instructions which are unique to the microproces-
sor. All three microprocessors, however, share the common instruc-
tion NOP, a “do nothing” or no operation instruction.

The 8080 Group 9 Instructions

The two instructions OUT and IN perform transfers of data from
the A register to an output device or from the output device to the
A register as previously discussed. RST, or Restart, is a special in-
struction used to facilitate the processing of interrupts. 1t is discussed
in Chapter 11.

The 6800 Group 9 Instructions

The 6800 has three special instructions related to interrupt process-
ing: RTI, Return from Interrupt, SWI, Software Interrupt, and WAI,
Wait for Interrupt. They are discussed in Chapter 11.

The 6502 Group 8 Instructions

The 6502 has two special instructions related to interrupt process-
ing: BRK, Break, and RTI, Return from Interrupt. They are dis-
cussed in Chapter 11.

73

CHAPTER

10

Microcomputer
Input/ Output

There are two methods for external I/O devices to communicate
with the microcomputer. The first of these is I/O via the cpu accu-
mulator and an I/O instruction, usually called programmed 1/0.
The second is by communication directly with the memory in the
microcomputer, bypassing cpu registers completely. I/O via 1/0 in-
structions is the most common and is used for low-speed I/O devices,
while direct memory access is used for high-speed I/O devices such
as floppy discs.

To perform an output to an I/O device in the 8080 by the first
method, an OUT instruction is executed, after first loading the A
register with the data to be transferred. The data is transferred to the
data bus, and the I/O address in the OUT instruction is transferred
to the eight least significant lines of the address bus. Two control
signals are brought up to inform the I/O device controller that an
output is being performed. The 1/O device controller recognizes its
I/0 device address and the control signals and transfers the 8 bits
of data to its internal buffer. In the 6800 and 6502, the process is
similar except that there are no actual I/O instructions. An output
is performed by loading the cpu accumulator(s) with the data to be
transferred and then performing a STA. The data in the accumulator
is transferred to the data bus, the address in the STA is transferred
to the address bus, and the device controller recognizes its address.
The device address is unique and cannot be used as a memory ad-
dress as previously discussed. The 8 bits of data are then transferred
to the internal buffer just as in the 8080 case. An input operation

74

is similar. The device controller recognizes its address, detects that
this is an input operation (or memory read in the 6800 and 6502
case), and transfers an 8-bit data byte from its internal buffer to the
data bus. An IN instruction is used in the 8080 case, while a LDA
is used in the 6800 and 6502.

The total execution time of the input or output is on the order
of 5 microseconds. Each time that the IN, OUT, LDA, or STA
instruction is executed another byte of data is transferred. To trans-
fer 64 bytes of data, as, for example, to output a line of 64 characters
to a video display, 64 discrete OUTs or STAs must be done. Each
1/0 device controller buffers the data. In the simplest case the device
controller buffer consists of a one-byte register. In other cases, the
buffer may be larger. The buffering is necessary to match the 1/0
device speed to the cpu speed. 1/O device speeds vary over a wide
range. A Teletype is able to transfer data at only 10 characters (or
10 bytes) per second. Audio cassettes operate from 30 bytes per
second to 500 bytes per second. Video displays may transfer data
at rates of 9600 bytes per second and above. Because all of these
speeds are far lower than the cpu speeds in executing the I/O instruc-
tions, data is transmitted to the device controller’s buffer in 5 micro-
seconds or so, and the cpu is then free to continue with the next
instruction.

There are several alternatives to timing the transfer of data to the
I/O device. The first would be to time the interval between transfers
of a byte so that the 1/O device would have been assured of com-
pleting the last transfer. This is rather difficult since most 1/0 devices
are not that synchronous. It is impossible to do when the device
is completely asynchronous, as, for example, an operator hitting
Teletype keys. A second alternative would be for the device con.
troller to set a flag indicating that the I/O device was “ready.” For
a device that is transferring data into the microcomputer, the ready
flag would mean that the next byte of data was available in the
device controller’s buffer. For a device that was accepting data, the
ready flag would mean that the device had finished with the transfer
of the last data byte and was ready to input the next into its buffer.
This is the general scheme used in most microcomputer I/O today.
A third alternative, having the device controller interrupt the cpu
when a ready condition came up, is discussed in the next chapter.

Using the ready flag method of I/O means that the flag must
somehow be tested. This means that another I/O operation must be
done to read in the current state of the ready flag. The general ap-
proach to this is to assign another 1/O device address to the status
of the device, so that the device controller will recognize the request
for device status and will send the status, rather than a data byte.
Obviously, in a more complicated I/0 device, more status bits could

75

be employed. For example, IBM-compatible tape transports would
have status bits indicating a parity error on the last read or write,
tape at load point, tape at end-of-tape, and so forth. Conversely, in
some cases it may be necessary to send control bits out to the device
controller in addition to data. An example of this would be control
information to an audio cassette interface which would start or stop
the cassette motor. In the general case, then, device controllers would
be able to supply information on the status of the device, accept
control data to control the device, and buffer data for transmission
to the device.

The maximum data transfer rate to a device under the method
described above is determined by how long it takes to transfer each
byte of data. Assuming that a block of data to be transferred is
nicely set up in memory in a contiguous block, and that only the
ready flag has to be tested before the next byte is transferred, the
I/0O procedure would go something like this:

At end of block? If not, go to 2; if so, done.

Get next byte of data from block.

Test ready. If not ready, go to 3; if ready, go to 4.
Execute I/O instruction.

Increment block pointer to next byte.

Go to 1.

If the average instruction time for the above loop was 5 micro-
seconds and there were 8 instructions executed for each byte, it
would take 40 microseconds to transfer one byte of data to the
device. This corresponds to a data transfer rate of 25,000 bytes per
second. In addition to the transfer rate limitation, the cpu must
continually execute the 1/0 loop; it is not free to do any other
processing. It is completely 1/O bound. For these reasons, DMA
is used to interface to high-speed devices such as some floppy discs and
certain graphics displays. In some cases the speeds of these devices
exceed the maximum transfer rates of the first method, and the cpu
is free to do other processing while DMA occurs on a cycle-stealing
basis.

The device controller that does the DMA operates in the follow-
ing fashion. Using special control codes, a starting memory address
is sent to the controller, along with the number of bytes to be trans-
ferred. These are both sent via the execution of I/O instructions.
Another control code is given to start the DMA transfer. The pro-
gram now can go on to any other processing that is required.
Periodically it may test a flag from the device controller to see if
DMA has completed, or an interrupt may occur at DMA completion.

While the program is doing other processing, the device controller
is performing DMAs at a rate consistent with the I/O device. If, for

SnAE RN

76

example, the 1/O device operates at 100,000 bytes per second, a
new byte of data must be transferred every 10 microseconds. Every
10 microseconds the device controller would bring up a control line
to the microprocessor that would cause the microprocessor to sus-
pend execution. The cpu would stop at a certain point in execution
of the current instruction and send an acknowledge signal telling the
device controller that execution had stopped. The device controller
would then be free to send a memory address over the system address
bus and pick up the next byte of data from system memory which
would then be transferred to the I/O device. The control line would
then be brought down to enable the cpu to continue with the current
instruction. This type of direct memory access is completely invisible
to the program. Every 10 microseconds a new byte is read from
memory while the cpu momentarily suspends operation. With a
memory operating at 500-nanosecond rates typically, this means that
every 10 microseconds 0.5 microsecond is devoted to DMAs, or that
the cpu is slowed down by 5 percent.

Given the two methods of I/0, how are various 1/O devices
interfaced to the microcomputer? One of the more common types
of interfaces offered as plug-in options to microcomputers is the
serial I/O option, sometimes called an asynchronous 1/0 option or
asynchronous serial 1/O option. This option interfaces to 1/0 de-
vices that handle data in serial fashion such as all Teletype equip-
ment, old or new, and equipment designed to replace Teletype
equipment, such as commercial alphanumeric displays. Equipment
such as this handles data in serial bit streams, as historically data
could more easily be transmitted over telephone-type lines in serial
fashion. The serial interface must receive a byte for output and then
send it over to the serial device a bit at a time in a prearranged
format. For Baudot-type Teletypes the format is a zero bit, followed
by five data bits, least significant bit first, followed by a one bit.
The first six bits are spaced 22 milliseconds apart, while the last
bit is 31 milliseconds, making a total transmission time per character
of 163 milliseconds. For newer model Teletype equipment the format
is a zero bit, followed by seven data bits, least significant bit first,
followed by a parity bit, followed by two one bits. Each bit is spaced
9.09 milliseconds apart, making the total transmission time 100 milli-
seconds per character or a maximum rate of 110 bits per second, or
110 baud. Teletype replacement equipment and other asynchronous
equipment operate at standard rates of 110, 300, 600, 1200, 2400,
4800, and 9600 baud, and many serial interfaces will handle these
rates with simple hardware strapping on the module. In addition
full-duplex or half-duplex operation will probably be offered. Full-
duplex operation means that a character can be transmitted either
direction simultaneously, while half-duplex permits transmission in

77

one direction at a time only. Teletypes and communications equip-
ment can operate in either mode. Another option the serial interface
may offer is a choice of signal level. The standard Teletype is called
20-millampere current loop while communications-oriented equip-
ment uses a standard voltage and signal type known as RS-232.
Lastly, more than one port may be offered on the serial option to
enable communication with more than one serial device.

The second type of general-purpose 1/O interface is a parallel-
interface option. The parallel-interface option may offer several input
ports and several output ports. Each port has its own address and
buffer latch. By addressing a port data can be read from or output
to the latches. With some minimal additional interfacing, standard
computer peripherals that are oriented toward transfers of one byte
of parallel data can be used on the microcomputer. These devices
are such things as high-speed punched—paper-tape readers, high-speed
paper-tape punches, character printers, line printers, and the like.

While the devices discussed above are primarily “off-the-shelf”
pieces of equipment that can be interfaced to the microcomputer by
a general-purpose interface, there is a second category of 1/O
equipment that has been developed for microcomputers, generally
for the 8080, 6800, and 6502 based micros. Equipment in this
category ranges from video boards that provide alphanumeric or
graphics displays and audio cassette equipment to complete floppy
disc systems. The complexity of the interface will vary with the
peripheral device. Some interfaces will use only programmed I/0.
A typical example of this type would be an audio cassette interface
which provides control outputs and status inputs and transfers data
a byte at a time via the cpu accumulator. Interrupt capability may
or may not be offered with the interface. Other interfaces will utilize
both programmed 1/0 and DMA transfers, such as some floppy disc
systems or the popular Dazzler color display. In general the package
will be complete, that is, the peripheral device will have a complete
interface ready to plug into the existing microcomputer bus, or at
least ready after some kit building. In addition most equipment offers
fairly good documentation, including pertinent applications software
to drive the 1/0 device.

A third category of 1/O interfaces are the special purpose inter-
faces for experimenters. These include analog-to-digital and digital-
to-analog interfaces, skeleton or prototyping boards, PROM pro-
gramming boards, EPROM boards, relay driver or discrete output
and input boards, and the like. Using these boards, the hobbyist is
relieved of some of the research and development effort in design-
ing his own unique interfaces to fulfill his microcomputer system
requirements.

78

CHAPTER

11

Microcomputer
Interrupt Processing

One day the author chanced to see a novice programmer attempt
to ask an acerbic old-timer a question regarding some microcomputer
code. The old-timer snapped, “Don’t interrupt me, I'm busy!” The
novice walked away, muttering that the old-timer was “like a com-
puter, not a human being.” The novice, gentle reader, was decidedly
wrong. Computers like to be interrupted, unlike some programmers.

The basic idea about microcomputer interrupts is that microcom-
puters are usually much faster than I/O devices, and in some cases it
is convenient to have an external stimulus or interrupt notify the
microcomputer that an 1/0 operation is done or that an I/O opera-
tion can be started. Take the example of Teletype I/0O, which pro-
ceeds at 10 characters per second. It only takes perhaps 20 micro-
seconds to get a byte of data, test Teletype status, and output the data
byte to the Teletype, It then takes the logic in the Teletype controller
100,000 microseconds to send the byte out to the Teletype in serial
form. In that 100,000 microseconds 20,000 instructions could be exe-
cuted. Why not use that time to process other data? This is indeed
possible under interrupt control.

A second example of interrupt usage is that of a high-priority inter-
rupt that occurs infrequently, but when it does it signifies a condition
that requires immediate attention. If your microcomputer system is
connected to a burglar alarm system, for example, an interrupt might
occur when one of the window switches is tripped, and the microcom-
puter could then take the appropriate action. Another example of this
in the 6800 and 6502 is an internal interrupt called NMI or “non-
maskable interrupt,” which in some cases is used to signify a power-

79

down condition. If this interrupt occurs, the microprocessor is about
to lose power and appropriate action can be taken.

Both of the examples above, the Teletype I/0O and the burglar
alarm, could easily be programmed without the use of interrupts. In
many manufacturers’ programs, output and input to a Teletype occurs
in a “wait” loop in which the microcomputer waits for Teletype ready
status and then transfers the next character. The burglar alarm could
be handled by polling or periodically testing the burglar alarm input
for a zero input condition that signals a tripped switch. However, as
microcomputer software gets more sophisticated and memories be-
come less expensive, interrupt-driven software will be used more fre-
quently. In addition, since the interrupt structure already exists in the
microprocessor and many 1/0 controllers, interrupts are an inexpen-
sive way to increase the throughput, or effective speed, of a microcom-
puter system.

Let’s illustrate how the throughput of a typical microcomputer sys-
tem could be increased and what actions occur during interrupt proc-
essing. A good example for this would be the processing involved in a
game of “Life.” Life is a popular microcomputer game that is ex-
plained in detail in back issues of Scientific American. It involves
representing successive generations of points on a matrix of squares
similar to a checkerboard. Each point lives or dies dependent upon the
number of neighbors it has in the preceding generation. In addition
points can be born where none existed previously. The net effect is a
constantly changing pattern of points that emulates civilization, with
colonies of points dying over many generations, other colonies repro-
ducing themselves indefinitely (or so it first appears), and wild groups
of Young Turks suddenly appearing and just as quickly disappearing.
Since each generation is dependent upon the preceding generation,
each point must be compared to the preceding number of neighbors,
necessitating a lot of processing from one generation to the next. A
typical amount of processing to calculate the next generation for a
64-by-32 matrix might be on the order of five seconds.

If we assume in our example that a video display at 120 characters
per second is being used, it would take about 814 seconds to output
each generation on the screen. If interrupts were not used, the total
time for processing and output would be about 13% seconds. With in-
terrupts, the total time for each generation would be very nearly 8%
seconds, or the I/O time only. Once a new generation was processed
and put in a buffer ready for output, processing for the next generation
could be started in a second buffer. This processing would be inter-
rupted every time the last character output to the screen was done, or
every 8 milliseconds. When the interrupt occurred, the interrupt rou-
tine would pick up the next character to be output to the screen, trans-
mit it to the video display controller, set up the display controller to

80

provide an interrupt after the 8 milliseconds it takes before the con-
troller is again ready, and then return to the interrupted point in the
processing program to continue processing of the next generation. The
net result of this would be that the processing portion of the program
would be interrupted every 8 milliseconds or so to do possibly 80
microseconds of computation to output the next character, adding
about 1 percent to processing time, and less than 1 percent to the time
required to perform I/0.

When the interrupt signifying that the video display is ready for the
next character appears, the processing program may be executing any
instruction. At the end of the current instruction the cpu recognizes
the interrupt, transfers control of the program to a special interrupt
processing routine, after first pushing the contents of the program
counter into the stack. Pushing the PC into the stack enables the inter-
rupt processing program to return to the point at which it was inter-
rupted, after interrupt processing has been completed. Since the inter-
rupt could have occurred at any instruction, the current states of the
cpu flags must also be pushed into the stack. If the instruction follow-
ing the interrupted point was a conditional jump on zero, for example,
and somewhere in the interrupt routine the zero flag was altered, a
return to the interrupted point must restore the state of the zero flag.
In addition, if the interrupt routine uses any cpu registers they must
also be saved in the stack before use. The return to the interrupted in-
struction must be made with the cpu flags and all cpu registers exactly
the same as they were before the interrupt. Saving the environment is
facilitated by use of the stack instructions to push the environment
upon entering the interrupt routine and to pull or pop the environment
upon leaving the interrupt routine.

In this manner interrupts can be used to speed up overall process-
ing. The interrupted program will never be aware of the infrequent in-
terrupts and processing can be overlapped with I/0 servicing. The
above example illustrated a single-level interrupt. Only one type of
interrupt could occur. The 8080 permits up to eight unique interrupts,
the 6800 allows four unique interrupts, and the 6502 allows three in-
terrupts. Special problems of reentrancy in software are discussed in
later chapters. Interrupt hardware implementation in the 8080, 6800,
and 6502 is discussed below.

The 8080 microprocessor chip has three signals associated with in-
terrupts, INT, INTE, and INTA. An interrupt will be recognized by
the cpu if the interrupt flag in the cpu is set. If the interrupt flag is not
set, the interrupt from the external I/O controller will be forgotten if
it occurs momentarily. In some cases the external device will supply a
constant signal level for the interrupt until the interrupt is recognized,
and in this case the interrupt will remain until the flag is set. In most
cases the interrupt will remain until it is recognized, but this is a func-

81

tion of the device controller and the specific microcomputer. The inter-
rupt is input to the microprocessor over the INT line. If the interrupt
occurs and the cpu interrupt flag has been enabled by an EI instruc-
tion, the cpu recognizes the interrupt condition after the current in-
struction has been executed, but before the next instruction can be exe-
cuted. The cpu then sends a special status signal, designated INTA,
out to the interrupting device controller. INTA, or interrupt acknowl-
edge, informs the external device controller that the cpu has recognized
the interrupt. At a certain interval after the INTA the interrupting de-
vice then “jams” a restart (RST) instruction onto the cpu data bus.
The cpu picks up the restart instruction and executes it on the next in-
struction cycle just as it would execute any instruction.

The RST instruction in the 8080 is a unique instruction designed
for interrupt processing. It is really a one-byte CALL. The length
must be one byte only, because the cpu is capable of picking up only
one byte in the interval after the INTA has been sent to the external
device controller. Like any CALL, the current contents of the pro-
gram counter are pushed into the stack. The program counter points
to the instruction that was to be executed just before the interrupt
occurred. Unlike the CALL, the program counter is not loaded with
an address from bytes 2 and 3 of the instruction as they do not exist.
The PC is loaded with eight times the 3-bit NNN field from the RST
instruction. NNN may be O through 7, and loading the PC with 8 X N
would therefore load 0, 8, 16, 24, 32, 40, 48, or 56 into the program
counter and cause a resultant transfer to these program locations.
There are therefore eight vecrors or pointers to locations that are pos-
sible with the 8080. Each vector points to a separate interrupt proc-
essing area where the normal saving of the environment occurs, or at
least where a JMP is made to an interrupt processing area where the
environment is saved. At the end of interrupt processing the environ-
ment is restored and an RET instruction is executed. The RET in-
struction restores the location of the interrupted instruction to the
program counter and then processing resumes from the interrupted
location.

Since there are eight vectors in the 8080, there may be up to 8 de-
vices with unique interrupts. It is the responsibility of the interrupting
device controller to request interrupt service when required by bringing
up an interrupt line. Since other devices may also be requesting serv-
ice, there is usually a separate priority interrupt module that recog-
nizes all interrupt requests (as many as 8), determines which has the
greater priority, brings up the INT line to the cpu, and jams the proper
RST instruction onto the data bus when the INTA line goes out. This
avoids ambiguities that would arise if each device controller could set
the INT line independently. The latter approach, taken in many mini-
computers, involves “daisy chaining” the interrupt lines from one

82

device controller to the next to establish priorities, and is generally
less straightforward than the priority interrupt module approach.

There are four types of interrupts in the 6800 microprocessor chip.
One of these, RES, is a reset interrupt and is used in the power-on
initialization. Implemented in a microcomputer, a power-on condition
results in the program counter being loaded with the contents of mem-
ory locations FFFE and FFFF,q This transfers control to a special
power-on interrupt sequence. A second interrupt, NMI, is used for
powerdown conditions‘in some applications. When this interrupt oc-
curs, the following cpu data is pushed into the stack in the given
order: PC;, PCy, INX;, INXy, ACCA, ACCB, condition codes. The
program counter is then loaded with the contents of memory locations
FFFC and FFFDy,, effecting transfer to the NMI, or nonmaskable
interrupt sequence. Neither NMI or RES may be disabled by resetting
the interrupt flag in the cpu condition codes. A third interrupt, SWI or
software interrupt, is produced by execution of the SWI instruction
with the interrupt flag in the cpu on. It causes the cpu registers and
flags to be pushed into the stack in the order given above. The pro-
gram counter is then loaded with the contents of locations FFFA;g
and FFFB,g, causing transfer of control to the SWI interrupt handling
routine. The primary external interrupt in the 6800 is the IRQ inter-
rupt. An external interrupt causes the same stack storage as previously
discussed and causes the program counter to be loaded with the con-
tents of memory locations FFF8,¢ and FFF9,,. Since there is only one
external interrupt (although NMI could be used as a second external
interrupt in a pinch), some means must be provided to implement
multiple I/O interrupts if more than one interrupt from an I/0 device
is required. Implementation of this is dependent upon the microcom-
puter, but generally involves ORing all external interrupts together.
When the interrupt occurs, a poll is made of all possible interrupting
devices. This involves reading the status from each device controller
and testing an interrupt flag in the status to see whether an interrupt
occurred from that particular device. If so, the program can then vec-
tor off into the specific interrupt handling routine for that device; the
actual hardware interrupt however, IRQ, has already occurred at that
point.

The 6502 microprocessor has three unique interrupts, RESET,
NMI, and IRQ, and they are very similar to the 6800. RESET is used
upon power-up and loads the contents of locations FFFC;4 and FFFD,,
into the program counter, transferring control to the restart routine.
NMI pushes the PC and processor status register (flags) into the stack
and then loads the program counter with the contents of locations
FFFA,¢ and FFFB,, transferring control to the NMI interrupt rou-
tine. Both NMI and RESET are not disabled by the state of the inter-
rupt flag in the cpu. IRQ is the external interrupt. It causes the same

83

stack actions as NMI but loads the program counter with the contents
of locations FFFE and FFFF;g, transferring control to the exter-
nal interrupt routine. Since, as in the 6800, there is only one exter-
nal interrupt, the same method of polling must be performed in soft-
ware to determine which external devices have an active interrupt
present. The RTI, return from interrupt instruction, pops the PC and
processor status register from the stack, to partially restore the envi-
ronment and return control to the interrupted location. Any cpu regis-
ters used in the interrupt routine, of course, must be initially saved in
the stack and restored at the end of the interrupt processing.

84

PART

3

Assembly Language
Programming With
Microcomputers

CHAPTER

12

Assembly Language vs.
Machine Language

Part 3 of this book will illustrate how to perform common opera-
tions on microcomputers, such as moving data, table operations, bit
processing, and so on. In order to facilitate the understanding of the
program examples, the programs will be written in assembly language
format for the various microprocessors. In fact, many readers may be
entering programs into their microcomputers in machine language.
Machine language is nothing more than assembling the instructions of
the program in octal or hexadecimal, whichever the manufacturer
prefers for his microcomputer. To enter a 200-instruction program
would mean writing down 200 8-bit values, expressed in binary,
octal, or hexadecimal and keying them into the machine from the
front panel, entering from the monitor program, or using a monitor
program in conjunction with a hexadecimal keyboard to enter the
values.

However, if machine language is to be used, it is still helpful to
first write the program using assembly language mnemonics and syn-
tax and then to hand assemble the mnemonics into assembly language
values for entry. For this reason we will discuss the characteristics
of the assembly languages used on the three machines.

A common assembly language line represents one instruction, and
is of the form

Label Operand Arguments Comments

An LDA (or LDAA) instruction, for example, might be represented
by the assembly language line

HERE LDA VALUE GET CURRENT VALUE

86

The operand is the actual instruction mnemonic found in the manu-
facturer’s literature. Many times this corresponds to the original
mnemonic used by the microprocessor chip manufacturer. The argu-
ments field of the assembly language line has the operands associated
with the mnemonic. The LDA, for example, must have a memory
address for the load, and memory location VALUE is that memory
address in symbolic form. This will be explained shortly. The com-
ments portion of the line is exactly that—comments describing what
the current instruction accomplishes. The label field is an optional
name of the location of the instruction, used in lieu of writing down
the memory address of the instruction, since it may not immediately
be known in a large program that is just being written.

The fact that it is difficult to keep track of the location of instruc-
tions while writing a program is the whole raison d’etre for symbolic
assembly language form. If the reader was writing a 40-instruction
program and a conditional jump had to be made near the start to
the 38th instruction, he could indeed write

JNZ 2135

if he knew for certain that the jump address was 213g. If he had
not written that portion of the program, however, it would be im-
possible to assign an. address at the time of writing down the JNZ,
and the operand field would have to be left blank, to be filled in
later. In addition, suppose that the address were carefully calculated
by assigning memory addresses to the instructions based on their
one-, two-, or three-byte lengths and the absolute address was writ-
ten down for the JNZ. If any instructions were added between the
JNZ and the location to which the jump was to be made the address
in the JNZ would have to be changed, along with other instructions
that referenced locations beyond the added instructions. A final rea-
son for using symbolic addresses instead of absolute addresses is that
the program in symbolic form is not tied to a specific part of memory.
It can be reassembled by hand or by assembler program to operate
anywhere in memory.

Using symbolic addressing, locations are referenced by their name,
and no absolute memory locations have to be written down for the
arguments field of the instruction line. An example of this is the short
program

START LXI H,CLR-1 CLEAR AREA—1
XRA A ZERO A

LOOP INX H BUMP CLEAR POINTER
MOV MA ZERO ONE LOCATION
JMP LOOP GO TO NEXT CLEAR

CLR

87

Although this is a short program to clear all of memory on an 8080,
and should be located starting at location 0, all memory references
were given symbolic names to illustrate that no absolute addresses
had to be used. Once the program is written and checked over, it
could be hand assembled. Start at the first instruction and write down
the starting address. Then move to the second instruction and write
down its address. If START was 000, then the next instruction is
at 003, since the LXI is three bytes long. Now move through all the
instructions, and assign a location for each instruction. The result
will look somewhat like this:

000 START LXI H,CLR-1

003 XRA A
004 LOOP INX H

005 MOV M,A
006 JMP LOOP
o1 CLR

Now double-check the instruction lengths and addresses assigned.
We are now ready to build a table of symbolic names. Although this
is a short enough program to be able to inspect the names to find
the absolute address, this is not always convenient in a large program.
The table of names, or symbol table, has three entries: START,
LOOP, and CLR. For convenience in long programs they are ar-
ranged in alphabetical order.

Name Location
CLR 011
LOOP 004
START 000

The next step after the symbol table is to start at the beginning
of the program and construct the instruction at each location. This
is a two-step process. First the skeleton of the instruction is written
down. This is the generic form of the instruction with no operands
or special fields filled in. Then the operands are filled into the instruc-
tion. The operands will be immediate data values, register numbers,
and memory locations. Whenever a symbolic reference is made the
symbol table is consulted and the value of that symbol found and
filled into the instruction. The result looks something like this:

Location Data Assembly Line Image

000 041 010 000 START LXI H,CLR-1 CLEAR AREA—1

003 257 XRA A ZERO A

004 043 LOOP INX H BUMP CLEAR POINTER
005 167 MOV MA ZERO ONE LOCATION
006 303 004 000 JMP LOOP GO TO NEXT CLEAR
011

88

Congratulations! You have exactly duplicated what an assembler
program does. The assembler has other niceties discussed below,
but essentially goes through the same steps as described above. A
typical assembler will consist of two passes. The first pass will calcu-
late the length of each instruction and update a current location
pointer. The symbol table is also constructed on the first pass, with
all symbolic names and references entered in the table in alphabetical
order. Each name is put into the table as encountered; therefore a
symbol in an operand field is entered in the table if it has not been
encountered as a name previously. In this case the symbol will be
encountered somewhere beyond the current location. It is a forward
reference. At the end of the first pass all symbols in the table should
have been resolved with a value. If a symbol has not been resolved, it
is an unsatisfied reference and an error. The assembler then reads in
the source statement lines once again, and this time constructs the
machine-language code, filling in the memory reference addresses and
other fields with values from the operand field of the source line or
with symbolic values from the symbol table. As each location is
constructed, the location, data contents, and assembly line image is
printed on the assembly listing device. A line number may also be
printed in some assemblers. In addition, if there are errors connected
with the line, diagnostic warnings are printed in the line. These are
usually one-letter codes that specify the type of assembly error. At
the same time that the current line is printed, or possibly during a
third pass, the object code of the assembly is output in the form
of punched paper tape, a magnetic tape file, a floppy disc file, or
another usable form. The object code represents the machine language
code of the program in a special loader format, which varies with
the type of microcomputer. The object code can then be read into the
microcomputer with another utility program, the loader program.

In addition to the normal instruction mnemonics for the defined
microprocessor instructions, each assembler will have a set of non-
generative operations that do not produce machine language code.
These are called pseudo-ops for that reason. Each pseudo-op replaces
the instruction mnemonic in the operand field of the assembly source
line.

The ORG statement informs the assembler to set the location
counter to a specified location. Instructions are then assembled from
that point. For example,

ORG 2000

sets the assembler’s location counter to 20005 (assuming that 2000
represents an octal location). ORGs can be used at any point in the
program where required. Each time an ORG, or new origin, is used,
the corresponding object code would contain some origin load item

89

flag that would inform the loader of the new origin. The loader would
then reset the load location counter and load the next data at the
new origin.

An END pseudo-op is self-explanatory. An EQU, or equate
pseudo-op, equates the name in the assembly line to the argument.
The EQU statement

TTY EQU 1

equates the name TTY to the value 1. The name TTY is placed
in the symbol table when the pseudo-op is encountered (or before,
if it is a forward reference) and the value of 1 is associated with
TTY. Equates are useful for defining commonly used values. It is
much easier to name the value 101101, CHK than to write out the
value each time it is referred to in the program, for example.

The pseudo-op DS or similar names (Motorola uses RMB, Re-
serve Memory Bytes) defines storage in the program. By writing the
pseudo-op and an argument, a certain number of unused data bytes
are left unfilled by the assembler. The assembler location counter
is incremented by the number of bytes specified in the argument
field. At load time, the loader will usually not fill these locations,
but will increment the loader location counter past the storage area.
Note that the storage area should not follow executable code other
than an unconditional jump. The storage area cannot be executed as
instructions, of course. The start of each storage area can be named
as required. A typical storage area for three variables computed in
the program might look like this:

MANNY DS 1 MAN HOURS FOR NEW YORK
MOE DS 2 METHOD OF ENTRY
JACK DS 2 JOB ACCESS KNOWLEDGE

Just as storage areas can be left unused for variables computed
in the program, variables can be defined at assembly time for use
during the program. These variables can also be named, and may
consist of numeric variables, ASCII data, double-precision data
values, and other data types, depending upon the assembler. The
pseudo-op assembly line

PAGE DW ‘PAGE’
will produce the four ASCII bytes 120 101 107,105 in the data

section of the listing, for example, with the assembler location counter
correspondingly counting up the four locations. The assembly line

MASKt DB 7

generates a data value of 7 at the current assembler location. This
location is symbolically named MASK1 and an LDA MASK]1 would
load 7 into the accumulator.

90

The ORG, END, EQU, storage, and constant-definition pseudo-
ops are the most commonly used pseudo-ops in microcomputers.
Others that might be found are pseudo-ops related to naming the
program tape or disc file manage, page and line formatting commands,
and macro-related pseudo-ops that generate macros of more than
one line of code. Another capability that is usually offered is expres-
sion use. An expression uses the operators +, —, *, /, and others, to
create algebraic expressions. The location two bytes beyond location
HERE could be referred to as HERE+2, for example. The length
of a table starting at location DINNR and ending at DSERT could
be computed by the assembler with proper use of the expression
equated to STUFD:

DINNR DB ‘CHOWDER’
DB ‘TOSSED GREEN’
DB ‘AU GRATIN’
DB ‘PEAS AND ONIONS'
DB ‘STEAK’
DB ‘CHERRY PIE’
DSERT DB —1

STUFD EQU DSERT-DINNR

STUFD would be equated in the symbol table to the length in
bytes of the DINNR table ASCII messages. In this case STUFD
would be equal to 58;y. Although the assembler the reader is using
may not allow multiplication (*) or division (/) in expressions,
it is easy to see how these operators could be employed in creating
useful variables generated automatically by the assembler, rather than
dynamically by the program. Since this section is concerned with
programming techniques, however, and since there is no uniformity
among assemblers, even for the same microprocessor, not too many
assembler-time tricks will be given. Use of pseudo-ops will also be
kept to a minimum. The mnemonics used for the instructions are
given in Appendices A-C. They are the symbols used by the micro-
processor manufacturer and, in general, will correspond closely to the
mnemonics used in microcomputer manufacturers’ literature.

91

CHAPTER

13

Moving Data

Data is moved in microcomputers a byte or sometimes 16 bits
at a time. Data can be moved from cpu register to cpu register, from
cpu register to memory, from memory to cpu register, and, with
combinations of the above instructions, from memory to memory.
Data is moved for various reasons. The entry point for most I/O
data being input to the microcomputer is a cpu register. Since I/0
data is usually many bytes long the data must be moved into an
input buffer area in memory. For an output I/O operation the reverse
is true. Data must be moved to an output buffer memory area from
the cpu register. Temporary results must be moved to and from vari-
ables in memory to cpu registers. Data flags of different types must
also be kept in flag words in memory. Constants must be moved into
cpu registers to initialize index values or for comparisons.

The basic ground rules for data movement apply to other coding
as well. Data should be kept in cpu registers whenever possible and
memory references should be avoided. When a constant is to be
loaded into a register one should always load the constant by imme-
diate means whenever possible. The immediate load may save one
or two memory locations if the constant is used only once, and exe-
cution of the immediate instruction is faster then a memory refer-
ence type of instruction. Variables should be assigned specific loca-
tions and should not be moved around. Data arranged in blocks,
such as I/0 buffers, should never be moved from one block of mem-
ory to another unless absolutely necessary. It takes milliseconds to
move a block of 100 bytes from one block location to another.
“Milliseconds” doesn’t sound too expensive in terms of computer
time, but repetitive moves of large blocks, as in sorting records, are
among the slowest processing tasks in all computer systems. Alterna-

92

tive approaches to moving blocks are lists and directories, which
are discussed in following chapters.

MOVING DATA—8080

The 8080 immediate instructions allow one to load an 8-bit im-
mediate operand into any memory location or cpu register or to load
a 16-bit immediate operand into register pairs B,C, D,E, H,L, or
the stack pointer register. Let’s look at the 8-bit case first. To move
one byte of immediate data, the second byte of the instruction, into
a cpu register the MVI R,DATA instruction is used.

CHARA EQU 0101

MViI B,CHARA

Note that the value of octal 101, or an ASCII A, has been named
CHARA, or character A. The equate takes up no memory location.
The 8-bit immediate operand could have been moved to a memory
location specified by the pointer or index value in the H,L registers
by the instruction

MVI M,CHARA

Sixteen-bit immediate values in bytes 2 and 3 of the immediate
instruction can be moved into register pairs by the LXI RP,DATA
instruction type. The RP mnemonic is replaced by B, D, H, or SP
and the data value is a sixteen-bit value, many times representing
a memory address, since B,C and D,E are index registers, H,L is the
original memory pointer, and the stack pointer must hold a memory
address of the stack. The instructions

PETER DS 10
PAUL DS 20
MARY DS 10

LX! B,PETER
LXi D,PAUL
LXt H,MARY
LXI SP,PETER

load B,C with the location of PETER, D,E with the location of
PAUL, which is 10 bytes further on, H,L with the location of MARY,
which is 30 bytes away from PETER, and SP with the stack area,
which is location PETER. If PETER was at location 30005, the
values loaded would have been 3000, 3012, 3024, and 3000, respec-
tively. Needless to say, the register pairs are properly set up to be

93

used as index registers or pointers to these areas. The following
code would store 2 and 4 into locations PETER and PAUL.

MVI A2
STAX B INITIALIZE PETER AREA
MVI A4
STAX D INITIALIZE PAUL AREA

Of course, performing a LDAX B or LDAX D loads the 8-bit value
at PETER or PAUL into the A register in the same fashion.

Another type of move instruction would be the MOV R,M or the
MOV M,R instruction. Both use the H,L register pair as an address
pointer. The following code moves 2 and 4 into the PETER and
PAUL areas in a slightly different manner than the previous STAX
code.

LXI H,PETER

MVI B,2

MOV M,B INITIALIZE PETER AREA
LXI H, PAUL

MVI C4

MOV M,C INITIALIZE PAUL AREA

Data from the PETER and PAUL areas could be loaded into B and
C by a MOV B,M and MOV CM in the same manner.

Yet a third way to move data is the direct method where the
LDA or STA instruction has a direct memory address in bytes 2 and
3 of the instruction. The code

MVI A2
STA PETER INITIALIZE PETER AREA
MVI A4
STA PAUL INITIALIZE PAUL AREA

accomplishes the same thing as the other two examples. In this case
no pointer registers or index registers have to be set up. (Sigh!
Which one to use . . .) Since the direct STA or LDA does not use
index registers, these are normally the instructions that are most
efficient. The exception would be if one or several of the register
pairs were initialized to point to the appropriate areas anyway.
Then an indexed or H,L move might be desired.

At times data must be moved from cpu register to cpu register.
Since many instructions utilize the A register for arithmetic or logical
instructions, the A register contents may have to be saved in another
register, if one is available. MOV R1,R2 moves the contents of
R2, the source register, to R1, the destination register. MOV B,C
and MOV A,D move the contents of the C register to the B register
and the contents of the D register to the A register, respectively.

94

These are the commonly used moves in the 8080. The remain-
ing instructions that move data are more unique. SHLD and LHLD
store and load the H,L registers from two consecutive memory loca-
tions, respectively. Since H,L are used in pointer type instructions
where the register pair is used as an index register, SHLD and LHLD
offer a convenient way to save the current contents of H,L, load
a new pointer, and, at some future time, load the previous contents
that were saved. SPHL transfers the contents of H,L to the SP regis-
ter. XCHG swaps the contents of H,LL and D,E. XTHL is also an
exchange which swaps the contents of H,L and the top of stack
memory locations. The stack pointer is not affected. More instruc-
tions that move data are discussed in the stack operations chapter.

In all the preceding instructions the cpu flags remain unaltered.

Clever programming tricks department: XRA A zeroes the A
register and is one byte shorter and faster than the corresponding
MVI A,O instruction.

MOVING DATA—6800

The index register or stack pointer register can be loaded or
stored by LDX, LDS, STX, or STS. All addressing modes can be
used in these instructions with the exception of the meaningless
“inherent” and the immediate mode for the stores. Here, as in the
808 case, it is convenient to load a value immediately to save mem-
ory references and possibly some memory locations for the value.
The following code loads the stack pointer with the top of stack
and the index register with the beginning of a buffer area.

TSTCK EQU $A000
BUFR1 RMB 80 INPUT BUFFER

LDX #BUFR1 POINT TO BUFFER
LDS #TSTCK RESET STACK POINTER

The immediate values #BUFR1 and #TSTCK are each 16 bits in
length and occupy bytes 2 and 3 of the instructions. Similarly the
STS and STX are used to save the contents of the stack pointer or
index register.

STX SAVEX SAVE INDEX REG
STS SAVES SAVE STACK PNTR

If SAVEX is located in the page O area and can be resolved in 8
bits, the assembler automatically makes a direct instruction out of
the STX. If SAVEX is out of page 0, then the STX must be an
extended instruction of three bytes. This automatic assembler-imposed

95

addressing relieves the programmer from explicitly identifying a loca-
tion as page 0 or non-page 0. Can an index register be used in an
LDX? There is no reason why not, as the cpu will calculate the
effective address, pick up the 16-bit value to be loaded, and then
load the index register to the new value. As an example of this, sup-
pose that we have been using the index register to help in searching
a table of buffer areas called BUFR1, BUFR2, . . . , BUFRN. The
A accumulator holds the address of one of the buffer areas. When
the corresponding BUFR address is found, the index register points
to the location in the table which holds the buffer address. Executing
the instruction

FOUND LDX X PICKUP BUFFER ADDRESS

loads the buffer address from the table into the index register, re-
placing the index value that points to the table entry.

The four instructions above affect some of the condition codes
after execution. The H, I, and C condition codes are not affected.
Overflow is cleared. N and Z are set to reflect the state of the sign
bit and the zero/nonzero state of the index register or stack pointer.
As in the implementation of many instructions among the three
microprocessors, don’t read any subtle meanings about why those
condition code bits are changed. Note the fact and file it away.

Since the 6800 has only two general-purpose registers, the A and
B accumulator, they are kept fairly busy and many operands must be
saved in memory to be retrieved at a later time to free the accumu-
lators for processing. LDAA, LDAB, STAA, and STAB load and
store the A and B accumulators. All addressing modes but the mean-
ingless inherent and immediate for the stores may be used. Operation
is straightforward. As a refresher, if the index register contains 10;,
and the code

STAA TABLEX STORE NEXT VALUE IN TABLE

TABLE EQU $100 NEXT GENERATION—PAGE 0

is executed, where will the contents of A be stored? If you have chosen
TABLE+10,0 (PAGE 0 10A,;) you are absolutely correct. LDA
and STA affect the condition codes just as LDX, LDS, STX, and
STS did. Overflow is cleared and the N and Z bits are set on the
contents of the appropriate accumulator.

Transfer of data between cpu registers is handled by several in-
herent (one-byte) instructions. TAB, TBA, TXS, and TSX trans-
fer data between A and B and between X and SP. The first letter
stands for transfer, the next is the source register, and the last is
the destination register. Eight bits are transferred between accumula-

96

tors, and 16 bits between the index register and stack pointer. The
condition codes are not affected for the TXS and TSX instructions,
but are modified as in the preceding instructions for TAB and TBA.
Two other inherent instructions clear either the A or B accumulator,
CLRA and CLRB. The same instruction is used to clear a specified
memory location, but the addressing may be only indexed or ex-
tended. The condition codes for all three CLRs are affected the same
way. H and I remain unchanged, N, V, and C are cleared, and Z
is set.

The last instruction of the 6800 move data types is the TPA in-
struction, an inherent instruction that transfers all of the condition
codes to the 4 accumulator only. Bit positions 7 and 6 are set to
one, while bit positions 5 through 0 hold H, I, N, Z, V, and C,
respectively. The condition codes are not affected.

MOVING DATA—6502

The accumulator, X register, or Y register can be loaded or stored
by instructions LDA, LDX, LDY, STA, STX, and STY. The ad-
dressing modes that can be used vary. All of the loads may be im-
mediate, such as the code

Js EQU 10
CPE EQU 20
JCF EQU 30

BACH LDA #J4S NUMBER OF BYTES
LDX #CPE START WITHIN BUFFER 1
LDY #JCF START WITHIN BUFFER 2

The LDX and LDY instructions may be zero page or absolute ad-
dressing. However, when indexing is used, only the other index
register may be used. In other words the instructions

LDX VALUE)Y INITIALIZE INDEX
LDY VALUEX

are valid, but

LDX VALUEX INITIALIZE INDEX
LDY VALUE)Y

are not. LDA, LDX, and LDY do not affect the C, I, D, V con-
dition codes, but change N and Z according to the value loaded
into the register. STA, STX, and STY operate much as one would
expect. Only zero page, absolute, and zero page with the other
index register are allowed for STX and STY. STA may use any

97

memory reference addressing mode. Condition codes are not affected
for the-above three stores. The accumulator, X register, Y register,
and stack pointer may be transferred to each other by the TAX,
TAY, TSX, TXA, TXS, and TYA instructions, where the second
letter is the source and the third letter is the destination register.
N and Z are the only condition codes affected and are set according
to the value transferred from the source register.

Examples of moving blocks of data will be provided in the chapter
on loops. The above discussion is only a brief description of how
data can be moved in 8-bit or 16-bit segments between cpu registers
and memory.

98

CHAPTER

14

Integer Arithmetic
Operations

The microcomputers discussed here allow easy implementation of
the addition and subtraction of two 8-bit operands. None of the three
microprocessors, however, have a multiply or divide instruction. The
multiply and divide functions must be implemented by shifting or by
special techniques which will be discussed.

The basic operations in adding or subtracting two bytes were dis-
cussed in Chapter 3. Negative numbers are represented in two’s com-
plement form with the sign bit set to a one and the range for 8 bits
being —128 to —1. Zero is a positive number of 00000000.. The range
for positive values is 0 through +127. When two operands are added,
there are three cases: addition of two positive numbers, addition of
two negative numbers, and addition of a positive number and negative
number. The maximum value in addition of two positive numbers is
+254 while the maximum value for two negative numbers is —256.
Both of these results would require a 9-bit signed number. An over-
flow condition exists when the result is —129 to —256 or +128 to
+254, and the overflow flag is set in the cpu if the microprocessor has
one. If the microprocessor does not have an overflow flag, the sign bit
can be tested for overflow. Overflow exists when the sign bit flips after
an add. Since overflow can never occur upon adding two unlike-signed
operands the test would be made only for the case of adding two
positive numbers or two negative numbers. Examples of overflow
follow:

01111100 O1111111 16000000 11111111
00000160 01111111 10000000 10000000

10000000 11111110 100000000 101111111

99

All three microcomputers have a carry flag that is set whenever there
is a carry out of the most significant, or sign, bit of the result of an
addition. The carry is useful as it permits double- and multiple-preci-
sion schemes that are discussed in the next chapter. In multiple-preci-
sion schemes the addition is really of two unsigned numbers that rep-
resent the lower order portion of a signed 16-bit number (or greater).
In these cases the carry is the same as any other carry from a bit posi-
tion with the exception that this carry can be easily tested and saved.

Subtraction is essentially the same as addition, as all three cases
exist in the subtraction operands as did in the addition operands. The
subtrahend is effectively two’s complemented before the addition oc-
curs, or a subtract mode bit is set in the arithmetic and logic unit of
the cpu to effect a subtract rather than an add from the adder/sub-
tractor logic.

In all cases the cpu flags representing carry, zero, and sign are set
after the add or subtract has been performed. Any flags that are not
arithmetic flags, such as the interrupt flag, are not affected. The arith-
metic flags, of course, can now be tested to determine the results of
the operation.

There are three general ways to multiply in software in microcom-
puters. The first is by successive addition of the multiplicand. The
multiplicand is added to a partial sum the number of times equal to
the multiplier. If, for instance, 45 was to be multiplied by 5 the partial
sum would be zeroed, and 45 added 5 times to the partial sum. The
second method is by shifting an operand to the left. Each left shift
multiplies the original operand by two. Sometimes a combination of
shifting and addition can be used. Multiplying by 10,, for example,
can be implemented by shifting one bit position to the left, saving the
result as TEMP1, shifting twice more, and then adding TEMP1 to the
partial sum. To multiply 9 by 10, for example, we have

00001001 +9

00010010 418 after left shift-—save
00100100 436 after left shift
01001000 +72 after left shift
00010010 add +18 saved

01011010 490 = result

What has been done here is to factor 10 into 842, making the multi-
plication 9 X (8+2). Since both of the factors are powers of two, the
subsequent multiplication by shifting and one add is easy to imple-
ment.

The first method of repetitive additions lends itself well to very
small multipliers. The second method is hardly a general case, but
works well for decimal conversions and other unique multiplies. The

100

third method of multiplication discussed here is a general case mul-
tiply that will work for any two' 8-bit operands. It is identical with the
pencil-and-paper decimal multiply that the reader performs. (This is
a very dangerous statement to make considering the proliferation of
pocket calculators.) The method is illustrated below. Each bit of the
multiplier is examined. If the bit is a zero, the partial result is shifted.
If the bit is a one, the multiplicand is added to the partial result. The
process continues until the last bit has been examined. Here is the
multiply of 9,4 and 40;,.

00001001 +9
00101000 +40

00000000
00000000
00000000
00001001
00000000
00001001
00000000
00000000

0000000101101000 +360

Note that the product is a 16-bit or double-precision number. Almost
all software multiplications will produce 16-bit products. It’s also
apparent from the layout of the multiply that testing of the multiplier
bits and shifting could have proceeded from the most significant bit
first, with a shift in the opposite direction. Both approaches are used
in multiply routines. An unsigned multiply routine is one in which
both operands are considered positive; a signed multiply can be used
with any combination of operands to produce a correctly signed re-
sult. In the latter an exclusive orR of the sign bits of the operands will
give the sign of the product. The multiplicand and multiplier are then
changed to their absolute values, multiplied by an unsigned multiply,
and the product converted to the proper sign. For a 16-bit product,
overflow can never occur. The worst cases of +127 by +127 and
—128, by —128 produce +16129 and +16384, respectively, both of
which can be held in a 16-bit signed value.

The techniques for division are somewhat similar to the techniques
for multiplication. Division can be accomplished by successive sub-
traction of the divisor from the dividend residue. The count of the
number of times the divisor can be subtracted before the residue goes
to zero or below is the quotient. For example, suppose +120 was to
be divided by +20. The process and the value of the running count is
shown below:

101

01111000 +120 - 00010100 +20

01111000 Dividend
11101100 Divisor, two’s complemented for add

01100100 First residue, CNT=1
11101100

01010000 Second residue, CNT =2
11101100

00111100 Third residue, CNT=3
11101100

00101000 Fourth residue, CNT=4
11101100

00010100 Fifth residue, CNT=5
11101100

00000000 Sixth residue, CNT=6
Residue = 0, therefore quotient = 6

The second division method is used to divide by two. Shifting to the
right divides by two for each shift. When this is done with a signed
number, care must be taken to sign extend the most significant bit. An
arithmetic shift to the right does this automatically. Dividing —120 by
8 involves three arithmetic right shifts:

10001000 —120 (two’s complement)
11000100 First shift produces —60
11100010 Second shift produces —30
11110001 Third shift produces —15

Note that the sign bit is extended into the next bit position after each
shift.

Just as in the case of the multiplies, the first division method works
well for small divisors or for special cases, but not as a generic form
of division. The usual software divide in microcomputers works with
a 16-bit dividend and an 8-bit divisor, and is a restoring type of divi-
sion similar to pencil-and-paper decimal division. The divisor is sub-
tracted from the residue. If the result is negative, the residue is re-
stored to the previous value and a zero is recorded as the quotient bit.
If the result is positive, the result replaces the old residue and a one is
recorded in the quotient bit. The residue is shifted up one bit position
and the process continues. A detailed example of this type of divide
is given in the programming algorithms section (Part 4) of this book.
Once again, the divide may be an unsigned divide that operates on two
positive operands, or it may be a signed divide. Generally the dividend
is 16 bits, the divisor is 8 bits, and the quotient is 8 bits. An 8-bit
remainder is also sometimes provided. Overflow is indeed possible for

102

most divides. If the quotient is greater than +127 or less than —128
overflow has occurred and a software flag bit is generally set to indi-
cate the overflow condition.

Double- and multiple-precision schemes that permit multiplies and
divides of operands greater than 16 bits are discussed in the next chap-
ter. Software routines to accomplish unsigned multiplies and unsigned
divides are given in Part 4.

INTEGER ARITHMETIC—8080

The 8080 instructions permit two types of 8-bit adds and subtracts:
adds or subtracts with carry and adds or subtracts without carry. The
adds and subtracts with carry are used in double- or multiple-precision
operations and will be discussed in the next chapter. The adds and
subtracts without carry operate on the A register, that is, a second
operand is added or subtracted from the operand in the A register and
the result is placed in the A register. The cpu flags are set according
to the results of the operation. The zero, sign, parity, carry, and auxil-
iary carry are affected. Operation is straightforward with no surprises.
The second operand may be an immediate value, a memory operand,
or a register operand. If it is a memory operand, then the H,L register
pair points to the memory location. The following code computes the
sum of two variables, one in memory and one in a cpu register, and
adds a constant to the sum.

MOLLY DS 1
ME DS 1
BABY EQU 3

LXI HMOLLY POINT TO MOLLY

MOV BM GET MOLLY
BLUEH LXI H,ME POINT TO ME
XRA A CLEAR A
ADD M ME
ADD B MOLLY AND ME
ADI BABY MOLLY AND ME AND BABY MAKES 3

The code is deliberately inefficient to illustrate the three types of adds.
Subtracts work in exactly the same fashion.

The 8080 also permits double-precision adds. They are mentioned
here and not in the next section because they are implemented in the
instruction set. In these the destination register is always the H,L reg-
ister pair. B,C, D,E, H,L, or SP can be added to the contents of H,L
with the result being placed into H,L. Only the carry flag is affected,

103

with the other flags remaining the same. The add is an add of two 16-
bit operands, with the sign bit considered to be in the most significant
bit of the register pair. Here is a double-precision multiply by eight
implemented by this type of instruction:

MULT8 LHLD OPRND LOAD 16-BIT OPERAND

DAD H OPERAND*2
DAD H OPERAND*4
DAD H OPERAND*8
OPRND DS 2 HOLDS DP OPERAND

Multiplication or division by shifting in the 8080 is complicated by
the fact that all shifting is done by rotations. This means that the bit
shifted out of the register will have to be cleared before rotating into
the opposite bit position, and that negative operands will have to be
sign-extended with a little additional code if a divide by two is to be
performed. Here are two examples of a logical right and left shift per-
formed on the 8080 to effect a divide by two and multiply by two.
Each time the shift is performed the carry must be cleared to guarantee
that a zero is shifted into the opposite end of the register. Clever pro-
gramming tricks department: Executing an ANA A will clear the
carry and leave the A register unchanged.

ANA A CLEAR CARRY
RAL MULTIPLY BY TWO

ANA A CLEAR CARRY
RAR DIVIDE BY TWO

The above code works only with positive integers.

INTEGER ARITHMETIC—6800

The 6800 allows adds and subtracts with both accumulators with
and without the current state of the carry. Adds and subtracts with
the carry are discussed in the double-precision section of this book.
The addend, or subtrahend, from memory or the immediate value, is
added to the contents of either the A or B accumulator and the result
goes to the accumulator. Flag bits H, N, Z, V, and C are affected. In
this microprocessor overflow is set if arithmetic overflow results, as
discussed previously. The two accumulators can be subtracted or
added by SBA or ABA. In these instructions the contents of the B
accumulator are added or subtracted from the contents of the A ac-
cumulator and the result is placed in the A accumulator.

104

Multiplication and division by shifting in the 6800 is easy because
there is a true arithmetic shift implemented in either the ASL or ASR
instruction. The shifting may be done either to a memory operand or
to the contents of the A or B accumulator. The following code finds
the average of four numbers and places the result in location AVAGE.

LDAA NUM1 GET FIRST RESULT
ADAA NUM2 ADD SECOND RESULT
ADAA NUMS3 ADD THIRD RESULT
ADAA NUM4 ADD FOURTH RESULT
ASRA DIVIDE BY 2

ASRA DIVIDE BY 4

STAA AVAGE STORE RESULT

No check is made of overflow conditions. In practice this would have
to be performed.

INTEGER ARITHMETIC—6502

The 6502 has adds and subtracts with carry only, so that if an add
is to be performed without carry, the carry must first be cleared and if
a subtract is to be performed without carry, the carry must be set.
Once the carry is cleared or set the add or subtract presents no
problems. An immediate or memory operand of 8 bits is added to or
subtracted from the contents of the accumulator and the result is
placed in the accumulator. The N, Z, V, and C condition codes are
affected. Here, as in the 6800, an overflow condition can be checked
easily by the V flag. The ADC and SBC instruction can be just about
any type of addressing mode except for Z page Y and meaningless
modes.

Multiplies by two present no problem in the 6502 since the so-
called arithmetic shift left instruction shifts a zero into the least signifi-
cant bit position. There is no arithmetic shift right, however. The LSR
will perform a divide by two on positive operands with no problem,
but additional code would be required to sign extend for negative oper-
ands. The following code duplicates the 6800 code above to find the
average of four numbers. It works for positive results only.

LDA NuUM1 GET FIRST RESULT
CLC CLEAR C

ADC NUM2 ADD SECOND RESULT
CLC CLEAR C

ADC NUM3 ADD THIRD RESULT
CLC CLEAR C

ADC NUM4 ADD FOURTH RESULT
LSR DIVIDE BY 2

LSR DIVIDE BY 4

STA AVAGE STORE RESULT

105

CHAPTER

15

Double- and
Multiple-Precision Schemes

Single-precision applied to microcomputers usually means 8-bit
operands, since the data bus and arithmetic and logic unit are both
oriented toward 8-bit slices. A range of O through 255 is fine for
setting up index values or for defining x,y coordinates on a video dis-
play, but it is generally useless for application programs that compute
accounts receivables, determine frequencies for playing music, or per-
form scientific calculations. Even 16 bits, or double-precision quanti-
ties, may not be adequate for many applications, since a range of only
+32767 to —32,768 is provided by 16-bit operands. Thirty-two bits
provide a much more usable range for most applications, since the
range is expanded to approximately =4,294,967,296. In practice, pre-
cision much greater than 16 or 24 bits or so is usually handled by
floating-point representation in microcomputers, which allows for sig-
nificance of about seven decimal digits and a range of 1 X 10*% or so.
In this chapter we will discuss the implementation of double- and mul-
tiple-precision schemes that provide 16 or 24 bits, although there is
no reason that the reader could not apply the principles to precisions
of any number of bits.

Adding or subtracting in multiple precision basically involves sav-
ing the carry or borrow status from the next lower byte and adding it
to the higher byte in the least significant bit position. As an example,
suppose that two 16-bit double precision operands of +458 and +683
are to be added. The form of the operands is

0000000111001010 + 458
0000001010101011 + 683

106

where the most significant bit is the sign bit. This is true for any n-
precision number; the most significant bit is the sign, and the previous
sign bit position in the lower-order byte(s) are simply binary digits
just as any other bit position. Since any add is generally of two 8-bit
operands, the two numbers must be added in two steps. In the first
step, the lower-order bytes are added and any carry out of the most
significant bit position is saved:

11001010
10101011

C™™S01110101

In the second step the higher-order two bytes are added, with any
carry being added to the least significant bit position.

00000001
00000010
1 Carry from previous add

00000100
The two results are now merged into one 16-bit sum.
0000010001110101 +1141

This process of adding two bytes at a time, saving the carry, adding
the next higher-order byte with the carry, saving the carry for the next
add, and so forth, can be repeated for as many bytes as there are in
the operands. Furthermore, the microprocessors discussed here have
specific instructions to add the carry from the previous lower-order
add, as we have seen.

Subtract works much the same way as an add, except that the carry,
although still called a carry, is actually a borrow from the next higher-
order byte. As an example, let’s perform a subtract of +128 from
+1024.

0000010000000000 +1024
0000000010000000 +128

00000000 Lower-order subtract by

B~ 10000000 two’s complement add
10000000
00000100 Higher-order subtract by
00000000 two’s complement add
-1 Borrow from lower-order subtract
00000011

0000001110000000 +896 merged result

107

The subtract instructions would permit a lower-order borrow to prop-
agate in¢o the next higher-order bit positions similarly to the add with
carry instructions.

The carry to higher-order bit positions must be considered not only
in addition and subtraction of multiple-precision numbers. If a multi-
ple-precision number were to be negated or two’s complemented, any
carry to higher-order bytes must be added in by the same process. If
+1024 is to be negated, the two’s complement is first taken of the low-
order byte:

00000000 Low-order byte of 0000010000000000

11111111
+1

C 00000000 Two’s complement of low-order byte

Then the one’s complement is taken of the high-order byte and any
carry is added in.

00000100 High-order byte of 0000010000000000

11111011 One’s complement of high-order byte
+1 Carry from low-order byte

11111100 Result
1111110000000000 —1024 merged result

This process could be repeated for a number of any precision. An
explicit test would have to be made for the carry, as none of the micro-
processors have a “complement with carry” instruction. This is done
by performing a one’s complement by the appropriate instruction,
testing a flag indicating a carry from the low-order complement, and
adding one to the one’s complemented value if the flag is set.

Double-precision and multiple-precision multiplication and division
are quite a bit more complicated than addition and subtraction. A
multiply by repeated additions or a divide by repeated subtractions is
one way to implement a multiple-precision multiply and divide. In
this method, of course, the additions and subtractions are multiple-
precision, using the techniques discussed above. Multiplication or divi-
sion by two or by any number that can be factored into powers of
two is also possible by performing double- or multiple-precision shifts.
The shifts operate as one would expect, with the shifted bit going into
the carry flag and any previous carry being shifted into the vacated
bit position. Sign extension on a right shift for a divide is performed
by extending the sign in the most significant byte by whatever means
are available for single-byte sign extension.

The usual method for implementing a double-precision multiply
takes advantage of the fact that a double-precision number can be

108

expressed as B + (A X 256). The B portion is the low-order byte
value while 4 is the high-order byte, and it can easily be seen that any
double-precision number can be resolved in this form, as, for example,
+683:

0000001010101011 or +683 = (00000010 x 256) + 10101011
(2 X 256) + 171

512 + 171

nni

I

683

Multiplication of two double-precision operands is achieved by the
expansion of (A4 + B) X (C + D) where B and D are the low-order
bytes of each operand, and 4 and C are the high-order bytes. The
factor of 256 for A and C has been made implicit for clarity. Now,

(A+B) X (C+D)y=BXxXD
+ B X C X 256
+D X A X256
+ A X C X 65,536

Four single-precision multiplies of A X C, A X D, B X C, and B X D
are performed and the results of each are saved. The results are now
merged by multiple-precision adds of four bytes, as the product can
never exceed four bytes, except in one case, the multiplication of
—32,768 by itself. The arrangement of the adds is determined by the
factor of 1,256, or 65,536 for each of the four products. If the four
bytes of the product are numbered 3, 2, 1, and 0 from left to right, then
all four bytes are cleared, the BD product is added to bytes 1 and 0 in
double-precision, the BC product is added to bytes 2 and 1 of the
result, the DA product is added to bytes 2 and 1 of that result, and
the AC product is added to bytes 3 and 2 to produce the final product.

Division of multiple-precision numbers in the generic form is the
most awkward of any of the multiple-precision operations, causing
stout-hearted microcomputer programmers to throw up their hands
in despair. Probably the best way to implement a divide involving a
dividend of more than two bytes is to emulate a single-precision divide,
where a subtract of the divisor is done, the result tested, a restore and
a 0 or no restore and a 1 is put into the quotient, and the process is
repeated for the n — 1 bits of the dividend. Only n — 1 iterations are
usually required because the subtraction, test, and restore do not have
to be done to the sign bit of the dividend. This process would involve
multiple-precision subtracts and adds of the divisor to the dividend,
multiple-byte shifts of the partial quotient, and quite a bit of data
shuffling from cpu registers to memory storage and back. For those
readers who think that this is a cop-out, it most certainly is. A divide
of a two-byte dividend and one-byte divisor is described in Part 4 of
this book, but if more precision is required, the reader is advised to

109

consult listings of manufacturers’ software or other programming ref-
erence materials.

MULTIPLE PRECISION—8080

As described in the previous chapter, the 8080 has a built-in double-
precision add in the form of the DAD instructions. The DAD allows
a series of double-precision adds where the multiple-precision oper-
ands are multiples of two bytes long. Take the following example,
where there are two four-byte operands in locations FOUR1 and
FOUR2 which must be added to produce a sum that is to be placed
in FOURS.

FOUR1 DS 4 HOLDS QUAD PRECISION NO 1
FOUR2 DS 4 HOLDS QUAD PRECISION NO 2

QUADA LHLD FOUR142 GET TWO LS BYTES

XCHG FOUR1+2 TO D,E

LHLD FOUR2+4-2 GET TWO LS BYTES

DAD D FIND LS RESULT

SHLD FOURS+4-2 STORE LS RESULT

LHLD FOUR1 GET TWO MS BYTES

JNC BYPAS JUMP IF NO CARRY

INX H DOUBLE PRECISION BUMP
BYPAS XCHG FOUR1 TO DE

LHLD FOUR2 GET 2 MS BYTES

DAD D FIND MS RESULT

SHLD FOURS STORE MS RESULT

FOURS DS 4 HOLDS QUAD PRECISION RESULT

In the general case the 8080 performs multiple-precision adds and
subtracts by the ACI, ADC, SBI, and SBB instructions in conjunction
with the normal adds and subtracts. The ACI, ADC, SBI, and SBB
instructions add in a carry or subtract a borrow in addition to the
immediate, memory, or register operand. To perform a double-preci-
sion subtract, for example, the following code would be used:

LDA OP241 GET LS BYTE OF ARG 2

MOV B,A MOVE TO B
LDA OP141 GET LS BYTE OF ARG 2
SUB B A—B

STA RES+41 STORE LS BYTE OF RESULT
LDA OP2 GET MS BYTE OF ARG 2

MOV BA MOVE TO B
LDA OP1 GET MS BYTE OF ARG 1
SBB B A—B WITH BORROW

110

STA RES
OP1 DS 2
OoP2 DS 2
RES DS 2

STORE MS BYTE OF RESULT

DP ARG 1
DP ARG 2
DP RESULT

Multiple-precision shifting for repeated additions or subtractions to
effect multiplies or divides are relatively easy to do on the 8080. An
example of a 32-bit shift using four registers could be implemented as
follows. The four-byte number to be shifted is in B,C,D,E and a right

shift is required.

SHFT4 ANA
MOV
RAR
MOV
MoV
RAR
MoV
MOV
RAR
MoV
MOV
RAR
MOV

A
AB

B.A
AC

CA
AD

DA
AE

EA

CLEAR CARRY

SHIFT B
SHIFT C
SHIFT D

SHIFT E

MULTIPLE PRECISION—6800

The 6800 has two instructions, ADC and SBC, that permit an add
or subtract with carry. Any addressing mode is permitted and the add
or subtract can be performed on the contents of the A or B accumula-
tors by an immediate or memory operand, but not by the contents of
the other accumulator. An example of a double-precision add with the
result held in accumulators A and B would be as follows:

ARG1 RMB 2 DP ARGUMENT 1
ARG2 RMB 2 DP ARGUMENT 2

LDAB ARG141
LDAA ARGT
ADDB ARG24-1
ADCA ARG2

LS BYTE IN B
MS BYTE IN A
GET LS BYTE OF RESULT
ADD CARRY FOR MS BYTE

As the 6800 has a true arithmetic shift, multiple-precision right
shifting to implement division by two is easy. Also, the shifts, whether
arithmetic or logical, may be performed on memory operands, so that
one is not forced to shift a cpu register, store the result, load the next

111

portion, shift and store, and so forth, Shifting a four-byte multiple-
precision operand in memory location LOCUS is accomplished by the

following code:

SHIFT LSR
ROR
ROR
ROR

LOCUS
LOCUS+1

SET CARRY
PROPAGATE CARRY

LOCUS+2 HERE TOO
LOCUS+3 HERE TOO

MULTIPLE PRECISION—6502

Multiple-precision adds or subtracts in the 6502 use the same ADC
and SBC instructions that are used in single-precision operations. The
carry is not changed for the high-order adds and subtracts, of course.
An example of the subtraction of two triple-precision operands in OP1
and OP2 with the result going to RES follows:

3 TRIPLE PREC ARG 1
3 TRIPLE PREC ARG 2
3 TRIPLE PREC RESULT

OP1 RMB
OoP2 RMB
RES RMB

SEC
LDA
SBC
STA
LDA
SBC
STA
LDA
SBC
STA

OP142
OP242
RES4-2
OP141
OoP2+41
RES-+1
OP1
oP2
RES

SET CARRY

GET LS BYTE

LS RESULT
STORE LS RESULT

STORE NEXT RESULT

STORE MS RESULT

Shifting operations in the 6502 for purposes of multiplication or
division by two are similar to the 6800. Either the accumulator or a
memory operand can be shifted. A true arithmetic right shift cannot
be performed, however, and sign extension of negative multiple-pre-
cision operands must be accomplished by some extra coding.

112

CHAPTER

16

Branching, Loops, and
Indexing

The three microprocessors discussed have taken some written
abuse from the author for various quirks in the instruction set, but
there is one area in which kudos are deserved. This is the imple-
mentation of branch and jump instructions. The conditional and
unconditional branches and jumps are very powerful in comparison
to many of the popular minicomputers. The ability to branch con-
ditionally on carry or no carry, zero or nonzero, positive and nega-
tive, and other conditions eliminates much code that would be used
to perform these tests in other machines.

Up to this point in the book we have not used conditional branch-
ing to any extent in the examples. Some of the preceding code could
have been shortened by using the techniques of indexing, loops, and
conditional branching. The basic structure for indexing is the loop,
whose etymology lies buried somewhere in the archives of computers.
Every loop has an initialization portion, main body, and termination/
testing portion. Using an example of a 6502 loop a simple loop
would be represented by

LDX #20 SETUP INDEX TO 20
LOOP DEX DECREMENT BY 1

BNE LOOP GO IF NOT ZERO
NEXT

The first instruction loads an index register with the immediate value
of 20. This is the initialization portion. The next instruction decre-
ments the count in the index register by one. This is the main body.

13

The last instruction tests the state of the zero (Z) cpu flag. If the
flag is nonzero, indicating that the last decrement resulted in a non-
zero value in the index register, then a branch is made back to the
location LOOP, where the decrement is repeated. The last instruc-
tion is the testing/termination portion. This short loop would be
executed twenty times, until the count in index register X was
decremented down to zero, at which point the conditional branch
would not be made and the instruction at NEXT would be executed.

An example of a loop the author has written many times is shown
below.

MOBUS LDX #20 SETUP INDEX TO 20
DEX DECREMENT BY 1
BNE MOBUS GO IF NOT ZERO

This is an example of an endless loop, as the initialization portion
is continually reentered and the index count can never reach zero.
It alternates between 20;, and 19,,.

In the two examples above, nothing really much is accomplished
in the loop. The only thing the first loop would be used for is per-
haps as a timing loop. The total time of the loop—initialization,
main body, and testing—would be one instruction time for the
initialization and two times 20 instruction times for the main body
and testing, or about 41 instruction times, corresponding to about
0.2 millisecond. The main body of the loop generally has more
processing and sometimes a great deal of processing since as much
code as required can be inserted into the main body. A brief example
of this would be the following loop, which searches a table of char-
acters looking for an ASCII A. The table is 20 characters long, so
if the A is not found after 20 characters, the search is ended. If the
A is found a conditional branch is made to location FND.

LDY #0 INDEX FOR TABLE START

LDX #20 SETUP INDEX TO 20 **
LOOP LDA TABLEY GET NEXT CHARACTER

CMP #°‘A IS IT AN A?

BEQ FND GO IF IT IS

INY INCREMENT BY ONE

DEX DECREMENT BY ONE **

BNE LOOP GO IF NOT TABLE END **

TABLE RMB 20

The original code of the loop is marked with asterisks. The other
code is additional processing within the loop. Note that there are

114

now two ways to end the loop, either by searching through the entire
table or by finding the character before the end of the table. There
is no reason why there cannot be many ways to conditional branch
out of the loop. The important point, however, is that somewhere
there must be a terminating condition to end the loop.

The above example illustrates another important point. Since
the 6502 has two index registers, one of them was used to count the
number of times through the loop, while the other was used to index
through a table two different types of indexing operations. The first
character loaded was from location TABLE. As the Y index was in-
cremented, the next character loaded was from TABLE-1, the next
from TABLE+2, and so on. This is a common type of operation in
almost any program.

Not only is a series of loops possible, but there may be loops
within loops, or nested loops, another common operation within many
programs. A simple two-level timing loop using the convenient 6502
index registers is shown below.

LDY VAR1 CONSTANT 1
LOPO LDX VAR2 CONSTANT 2

LOPI DEX INNER LOOP
BNE LOPI GO TO INNER LOOP
DEY OUTER LOOP

BNE LOPO GO TO OUTER LOOP

VAR1 RMB 1 TIME OF OUTER LOOP
VAR2 RMB 1 TIME OF INNER LOOP

Here two variables VAR1 and VAR2 are used to establish the
starting index values for the two registers. Variable times from about
30 microseconds to about 0.6 second can be achieved by putting in
different values for the variables. Here, just as in the one-level loop,
the nested loops may have any amount of processing within them,
and various exits may be made by conditional branches under
certain conditions, changing the timing loops into two-level process-
ing loops. Any number of nested loops is possible.

Lest this discussion gives the wrong impression, conditional
branches are not used only in loops. They are far more often used
in simply determining alternate paths in the program to be taken
depending upon various conditions. Many times these conditions
are held in software flags or variables inside the program. In a lot
of cases these flags indicate yes or no conditions, but in other cases
more states are used to reflect a number of different things. If the
flag is a binary 1 or zero, it is easily checked by a load or by a load
and compare which sets the Z flag to a one or zero and permits
a conditional branch on Z or non-Z. If the flag holds a number of

115

states a comparison is done to determine the state with a subse-
quent branch on equal (or zero). A typical set of flags are given here.

MODE DS 1 MODE FLAG-HOLDS PASS #, 0 — 4
TTY DS 1 0=TTY, 1=NO TTY

DFLT DS 1 0=DEFAULT OPTIONS, 1=USER-SELECT
NOSP DS 1 0=SPACE, 1 = NO SPACE

MSPF DC 1 0=SYSTEM PAID FOR, 1 = NOT

A question that arises sometimes when writing programs is when
to use a loop and when to use straight-line coding. In general, a loop
should be used whenever the overhead of initializing the loop and
testing for the end of the loop is small in comparison to the average
total time through the loop. Another factor is the amount of storage
required. The loop approach is almost always smaller in size than
the equivalent straight-line coding. A third factor is timing. If one
is to do a great deal of processing and that processing must be done
as rapidly as possible, then straight-line coding is called for. This is
not usually the case with many programs.

Many examples of the use of loop will be given in the following
chapters as loops are just naturally a good way to implement cer-
tain things.

BRANCHING, LOOPS, INDEXING—8080

All of the 8080 registers could be used as index registers, since
each as the ability to be incremented or decremented. However, A
is used for arithmetical functions, logical functions, and shifting, and
it is usually reserved for this type of processing. In addition, the
register pairs B,C, D,E, and H,L can be incremented and decremented
as double-precision index values. Also, LDAX and STAX use B,C
and D,E as index pointer registers, so the logical grouping is three
sets of double-precision index registers or six registers that may be
used as single-precision index registers, or any combination of the
two. Multiple indexing can easily be implemented on the 8080 as is
shown in the following example, in which B holds a table size, and
H,L points to the current entry in the table. The code computes the
checksum of all of the entries in the table by adding each byte to a
checksum value.

MvlE B,25 25 ENTRIES IN TABLE
LXI HTABLE ADDRESS OF TABLE
XRA A ZERO A
LOOP ADD M ADD NEXT ENTRY
INX H POINT TO NEXT ENTRY
DCR B DECREMENT INDEX COUNT

116

JNZ LOOP GO IF NOT DONE

TABLE DS 25 TABLE OF VALUES

A caution to be observed when working with the 8080 registers
is that decrements or increments of register pairs do not change the
condition codes. Therefore it is not valid to test for a zero or other
condition after adjusting the index value by a DCX RP or INX RP
instruction. A compare must be done to one or sometimes both
registers to determine if the terminating condition has been reached.
Decrements and increments done by DCR and INR change the Z, S,
P, and AC condition codes as expected. In addition, a memory loca-
tion can be used as an index value by the use of INR M or DCR M.
The condition codes change in the same fashion as if a register was
being used.

Another caution to be observed is that the 8080 does not change
the condition codes when an LDA, LDAX, or MOV is performed.
This means that if a conditional branch is to be made on the status
of a software flag, that flag must be loaded into a register and then
tested by some means. If the A register is used, an ANA A could be
used. As a testing alternative, an RAR instruction could be used for
flags that are zero or one. The least significant bit is shifted into the
carry in this case, and a subsequent JC or JNC could be made. The
same method would apply for the most significant bit, which could
be tested by an RLC instruction. Many times a flag word can do
double duty for two flags by using the most significant and least
significant bits for two separate flags, if those bits are easily tested
as they are in this case. Be certain to set or reset the flags properly,
however, by using ORs, ANDs, and exclusive ORs.

To set the msb of a double-flag word:

GETFL LDA FLAG1 GET FLAG
ORI 0100000 SET MSB FLAG

To set the Isb of a double-flag word:

GETFL LDA FLAG1 GET FLAG
ORI 1 SET LSB FLAG

To reset the msb of a double-flag word:

GETFL LDA FLAG1 GET FLAG
ANI 077777 RESET FLAG

117

To reset the Isb of a double-flag word:

GETFL LDA FLAG1 GET FLAG
ANI 0177776 RESET FLAG

Other methods of testing multiple flags are discussed in Chapter 21.

BRANCHING, LOOPS, INDEXING—6800

The 6800, of course, has one register set aside for indexing. The
index register is added to the value of the displacement field in the
second byte of an indexing type instruction to form the effective
address. Because the index register is a 16-bit register it can be used
to point to any memory location allowing the 6800 to index through
memory locations easily. There is no reason, however, that the A
accumulator, B accumulator, or a memory location cannot be used
to hold an index value of O through 255 which can be used as an
index count. The two accumulators can be incremented and decre-
mented, as can the memory location, and the condition codes are
set after each adjustment.

An example of another type of checksum using the index register
and an index count in the B accumulator is provided below. The
checksum in this case is formed by taking the exclusive OR of each
of the bytes in a given area.

LDX #TABLE POINT TO TABLE

CLRA ZERO A
LDAB #-25 INDEX COUNT
LOOP ADDA X ADD NEXT BYTE
INX
INCB BUMP INDEX COUNT
BMt LOOP GO IF NOT 25 TIMES
TABLE RMB 25 TABLE OF VALUES

There are several interesting things that appear in this code. First
of all, a negative value is used as the index count, and this value is
incremented to zero. Secondly, the conditional branch is made as long
as the count is negative, illustrating that the conditional branch may
be made on zero, crossing zero to a minus count, or crossing zero
to a plus count.

Testing software flags in the 6800 is facilitated by the TST instruc-
tion, which is specifically set up for that purpose. The N and Z bits
of the condition codes are set after the TST to reflect the sign and
zero status of a specified memory operand or the contents of one
of the accumulators. A software flag in memory can therefore be
tested without loading it into the accumulator in one instruction.

118

Naturally the flags are set for compares and during arithmetic, incre-
ment, and decrement instructions as well as flags for conditional
branches can also be tested in this fashion.

BRANCHING, LOOPS, INDEXING—6502

The 6502 uses a slightly different form of indexing than the 6800.
The index registers are 8 bits long and the displacement fields in
ABS,X and ABS,Y instructions are 16 bits long to compensate for
the index register length. Effective addresses to address any memory
location can still be formed either by Z PAGE X, Z PAGE Y,
ABS,X, ABS,Y, (IND,X), or (IND),Y addressing. Indexing through
memory must be done in 256-byte chunks, however, as the current
value in an index register will vary from O through 255. This is
usually no detriment, as many tables are less than 256 bytes long.
Here is an example that zeroes a 768-byte area.

LDX #255 INITIALIZE INDEX
LDA #0
LOOP STA TABLEX ZERO FIRST 256 BYTES
STA TABLE-}256,X SECOND
STA TABLE-+512,X THIRD
DEX ZERO FROM 255 TO 0
BPL LOOP GO IF 255 THROUGH 0
TABLE RMB 768 TABLE OF VALUES

The 6502 does not have a test instruction like the 6800, but does
set the condition flags on loads, enabling a conditional branch on
N or Z. Memory flags can also be tested by shift instructions which
would set the carry in addition to N and Z, but would leave the
flag altered.

119

CHAPTER

17

Subroutines

A subroutine is a set of instructions, varying from several to
hundreds or thousands, that can be utilized at different points in a
program by CALLs. The idea behind the subroutine is that a set of
instructions can be written once in a program rather than many
times. This saves memory at the expense of execution of a few more
instructions. Suppose, for example, that some code was written to
find the square root of a number. If the square roots of ten variables
were required at ten separate places in the program the same code
could be written in those ten separate places. The alternative would
be to write the code once, in a subroutine, and CALL that subroutine
at the ten points in the program at which the square root had to be
calculated. At the point of the CALL the accumulator might hold
the number whose square root was to be found. The CALL would
transfer the program to the address of the subroutine, the return
address would be pushed into the stack automatically, the subroutine’s
code would be executed, and at the completion of the subroutine a
return from subroutine instruction would be executed which would
pop the return address from the stack and transfer control back
to the instruction after the call. The accumulator would contain the
square root of the number. The CALLs are called CALLs on the
8080, branch or jump to subroutines on the 6800, and jump to sub-
routine on the 6502. The return from subroutine is called return
on the 8080, return from subroutine on the 6800, and return from
subroutine on the 6502.

The return address is sometimes called the link on other com-
puters. Formerly it was the programmer’s responsibility to save the
link and properly make the return at the end of the subroutine by
an indexed or indirect jump. The microprocessor manufacturers

120

have implemented these required actions in the call and return from
subroutine instructions, realizing that these are standard actions to
be taken for subroutines. Let’s hear it for the microprocessor
manufacturers!

In each subroutine there are a certain number of arguments that
must be passed from the calling program to the subroutine to operate
upon. The number of arguments would vary from none, as, for ex-
ample, in a subroutine whose purpose is to perform a line feed on a
Teletype, to many, as in a subroutine that writes a specified char-
acter to vdt screen coordinate X,Y, and then delays n microseconds.
In the latter example, the character, X, Y, and n are all parameters
that would be passed to the subroutine as arguments.

The method of passing arguments to a certain extent depends
upon the type of microprocessor, but also is related to the type of
programming being done. The 8080 has a large number of cpu
registers, and it may be very feasible to hold the arguments in two
or three registers, depending upon the precision and number of argu-
ments. The 6800 and 6502 have fewer cpu registers and it probably
is not always feasible to hold all the arguments in registers. Alterna-
tive ways to pass arguments are to group the arguments somewhere
in memory with one of the cpu registers pointing to the starting
memory location. Page 0 is a good place to put the arguments in
the case of the 6502, as only 8 bits can be held in the index registers.
Another possibility is to push the arguments into the stack before
the jump to subroutine is made. This is somewhat less desirable than
the argument in memory approach, as the subroutine now has to
increment the stack pointer past the return address to pick up the
arguments, put the return address in the proper place for the return
from subroutine, and in general manipulate the stack in a way in
which it was not meant to be used.

There are two general considerations when using subroutines
that should be emphasized: saving registers and reentrancy. When a
subroutine makes use of cpu registers, the calling program should be
aware of this and either expect a return from the subroutine with the
registers destroyed or push the registers into the stack before the call
is made. An alternative approach is to have the subroutine push the
registers that can be saved and restore them prior to the return. In
any event, some comments should be put in the listings about which
registers carry parameters, which are destroyed, and which are saved
to remind the programmer.

The second consideration is reentrancy. If your system has inter-
rupts this will be important to you. If a subroutine is shared by
software that is not part of interrupt processing and software that is
part of interrupt processing it may be possible to have data errone-
ously modified by the action of the interrupt processing. Take, for

121

example, a subroutine that performs an n-bit shift of data in the
accumulator. In this 6800 example, the number to be shifted is in
the A register and » is in the index register. The subroutine tempo-
rarily stores the partial result in a memory location inside the pro-
gram called TEMP1. If the interrupts are enabled at that point and,
if an interrupt occurs, an interrupt processing routine is entered.
If that interrupt processing routine includes as part of the processing
calling the shift subroutine, it will be reentered. If it is reentered,
it will use TEMP1 for the new value to be shifted, destroying the
old value. When the interrupt processing is done, the return from
interrupt causes a return to the interrupted instruction, somewhere
within the shift subroutine. TEMP1 will be utilized by the subroutine,
but it will contain an erroneous value because of the reentrancy.

SHIFTN . . . SHIFT N PLACES SR

STA TEMP1 TEMPORARY STORAGE

INTERRUPT—+—
LDA TEMP1 PICKUP SAVED RESULT
RET RETURN
TEMP1 DS 1 TEMPORARY STORAGE FOR SR

There are several ways around this problem. The easiest is to use
the stack for temporary storage, doing a push in place of the STA
and a pull in place of the LDA. If reentrancy occurs a different stack
location is used and the old data is saved. Another method is to turn
off the interrupts whenever memory is used as storage. They must be
off, however, for the entire time the memory storage area is used.
The third method involves using a separate storage area for each
system task. The calling task would then tell the subroutine what
area to use for temporary storage. There are other methods, but by
far the easiest and probably best method for microcomputers is to
use the stack.

Another important point, which cannot be emphasized too strongly,
is that all subroutines that use the stack must properly maintain the
stack pointer. If the subroutine does five pushes for temporary stor-
age, there must be five pulls, or the stack pointer must be adjusted
to the stack address it was pointing at when the subroutine was
entered. It is very easy to get confused about the current level when
there are multiple exit points from the subroutine and the stack has
been used also. Each entry point must be set up so that the stack
level on return from subroutine corresponds to the stack level on sub-
routine entry.

i22

Just as loops may be nested to any number of levels, subroutines
can also be nested to (just about) any number of levels. Since
the return addresses are saved in the stack area, there are no return
problems as long as the same number of return from subroutines as
calls are made, and as long as the same number of pushes as pops
(pulls) are made if the stack is used for temporary storage. The
qualifier in the first statement was made because the stack is a
finite size and it is possible to make enough calls or pushes to over-
flow the stack and start storing in a program area.

Just as in the case of loops versus in-line coding, there are times
to use subroutines and times not to. Obviously if only one call is
made to a given subroutine in the entire program, the subroutine
could be incorporated as in-line code at no loss in storage. Also, if
the subroutine is one that does not lend itself to a generic form, that
is, if it takes too much overhead to find out the proper processing
for the given arguments or simply requires too many arguments, it
may be time to abandon the generic form and construct a special
case for each occurrence of the processing in the program. Generally,
though, many routines can be subroutinized to the programmer’s
advantage, both in reduction in memory used and in software
modularity.

SUBROUTINES—8080

The 8080 can call subroutines either unconditionally by the call
instruction, or conditionally by the call on carry, minus, no carry,
no zero, positive, parity even, parity odd, or call on zero instructions
(CC, CM, CNC, CNZ, CP, CPE, CPO, or CZ). All calls have the
same result if the condition is met. The current contents of the pro-
gram counter is pushed into the stack and a jump is made to the
effective address, which is in bytes 2 and 3 of the instruction. A
return from subroutine is also conditional or unconditional. The
RET is an unconditional return and the RC, RM, RNC, RNZ, RP,
RPE, RPO, and RZ conditional returns. The following illustrates a
square-root routine that finds the integer portion of the square root
of an 8-bit number. A call to SQRT is made with the square in the
A register. The subroutine returns with the contents of A and C
destroyed and the integer square root in the B register. If the square
is zero, a return is immediately made.

KUKLA LDA sQi LOAD SQUARE 1
CALL SQRT FIND SQUARE RT
STA SQR1 AND STORE

FRAN LDA sQ2 LOAD SQUARE 2
CALL SQRT FIND SQUARE RT
STA SQR2 AND STORE

- 123

OLLIE LDA SQ3 LOAD SQUARE 3
CALL SQRT FIND SQUARE RT

STA SQR3 AND STORE
SQRT MVI B,O INITIALIZE SQ RT
CPI o
RZ RETURN IF SQ = 0
MVI C1 INITIALIZE ODD NUMBERS
LOOP suB C SUBTRACT NEXT ODD NUMBER
RZ RETURN IF O
RM RETURN [F MINUS
INR B BUMP SQUARE ROOT COUNT
INR C GET NEXT ODD NUMBER
INR c

JMP LOOP GO FOR NEXT SUBTRACT

By the way, this routine is based on the fact that the nth perfect square
is the sum of the first n odd numbers. For example, the third perfect
square, 9, is the sum of the first three odd numbers, 1+3+5=9.
This routine capitalizes on that fact to find the integer portion of the
square root of squares from O through 127, and it serves to illustrate
the use of calls and conditional and unconditional returns.

SUBROUTINES—6800

The call instruction in the 6800 is either JSR or BSR. Their dif-
ference is in the addressing modes employed. BSR, Branch to Sub-
routine, uses only relative addressing as do the other types of
branches. This means that the subroutine must be somewhere within
the floating page of the current instruction. The return within the
subroutine may be anywhere, as the return from subroutines RTS
uses the link address saved in the stack. JSR, Jump to Subroutine,
uses indexed or extended addressing and can therefore be used to
jump to any subroutine from any current location. Both BSR and
JSR have the same action as far as the stack is concerned, trans-
ferring the link to the stack and decrementing the stack pointer.
RTS does not affect the condition codes, which means that the con-
dition codes involved in the subroutine processing could be main-
tained as special flags. The following routines use overflow for what
it is intended—an overflow flag for a double-precision subroutine.
Upon entry the index register points to the first operand with the
A,B accumulators holding the second operand. The result of the add
is left in A,B. If overflow occurs, the flag is set upon return.

DPADD INX POINT TO LS OPERAND
ADDB X FIND LS RESULT

124

DEX CARRY NOT AFFECTED
ADCA X FIND MS RESULT
RTS C,0 SET OR RESET

SUBROUTINES—6502

The 6502 has only one jump to subroutine: JSR. It uses only
absolute addressing. The return from subroutine is made via the
RTS instruction. The stack actions are as expected and condition
codes are not changed when the RTS is executed.

125

CHAPTER

18

Stack Operations

As described in previous chapters, the stack in the three micro-
processors under discussion is a very convenient feature for the
programmer, providing a large storage area that is not affected by
interrupt processing, and being a means to automatically save the
environment during interrupt processing. There are no great problems
associated with stack use, but there are several common sense precau-
tions to take.

The stack area itself can be located in any area of memory that
will not be used by the program, except for the case of the 6502,
which uses the second page of memory as a stack area (100,—1FF¢).
The stack area must be large enough for the types of programs being
run. If there are many nested subroutines and a lot of use of the
stack as a temporary storage, then the stack area must be corre-
spondingly larger. In general, though, there is usually a great deal
of memory available for the stack, and stack overflow will be no
problem except in the smallest microcomputer systems.

The first action to take upon entry to a program must be stack
initialization. If interrupts are being used this is especially true, as
processing an interrupt before the stack is initialized will result in
erroneously storing data in a random part of memory as a result
of the automatic interrupt action. The stack pointer can usually be
loaded with a literal (immediate) value that represents the top of
stack. Note that the stack area “builds down,” that is, as items are
pushed into the stack, lower and lower memory locations are used.
When the stack pointer is loaded it is loaded with a value that truly
represents the fop of stack, if the reader pictures memory as a rec-
tangle in which the bottom represents memory location 0 and the top
represents the highest-valued memory location in the system.

126

If stack overflow should result either because of a coding error
that doesn’t maintain the stack pointer properly or because the stack
area is too small, there will be no automatic indication of the fault.
(On some larger computers stack overflow or underflow results in an
automatic fault interrupt.) In the 8080 or 6800 the program may
bomb as a result of writing into the program area, or the problem
may manifest itself in a slightly more subtle way that takes some
time to be discovered. In the 6502, the stack will simply be reset
to about the top of stack, as the stack pointer is a 9-bit register
with the msb set to 1; changing the stack level can never result in a
current stack location other than 1005 through 1FFs If stack
underflow results (too many pulls or pops), the same type of errors
occur as erroneous data is read or subsequent pushes overwrite non-
stack locations.

All of the microprocessors discussed here have instructions to push
8 bits or 16 bits of data into the stack and to pull data from the
stack. Instructions are included to update the stack pointer, usually
by incrementing or decremeting it. There is no reason to have a pull
for every push—the stack may simply be adjusted by an increment
in place of an actual transfer of data.

Interrupt action in regard to the stack varies according to the
microprocessor. The 8080 does not automatically store any cpu
register except for the program counter and flags by executing the
RST instruction which is the vectored interrupt controller’s response
to the interrupt. Further saving of the cpu registers must be performed
in the software interrupt processing routine. The 6502 is smiliar to
the 8080 in that it saves only the contents of the program counter
and processor flags when an interrupt occurs. The 6800 saves all cpu
registers and status in response to an interrupt. In the return from
an interrupt the same rule must be followed as in a return from a
subroutine. The stack level must be restored to the same point as
before the interrupt. Pushes performed by both the hardware inter-
rupt action and software interrupt processing must be compensated
for by pulls or pops or by proper adjustment of the stack pointer.

STACK OPERATIONS—8080

The stack pointer can be initialized by an L.XI SP instruction
which loads the stack pointer with the specified 16-bit intermediate
value signifying top of stack+1. (The stack pointer is always decre-
mented by one before storage of each byte).

TOPS EQU 040000

LXI SP,TOPS

127

Calls to subroutines result in the link (contents of the program
counter) being stored in the stack as follows:

STACK LOCATION N PC most significant 8 bits
N-1 PC least significant 8 bits

Pushes result in two bytes of data being transferred to the stack,
either the two bytes of register pairs B,C, D,E, or H,L or the A
register and cpu flags. The storage during a push is shown below:

STACK LOCATION N Register pair ms 8 bits
N-1 Register pair Is 8 bits
or
STACK LOCATION N A register
N—-1 Flags

Since the interrupt response is the one-byte call, the RST instruction,
the stack action is the same as for the CALL. In all of the above
actions, the stack pointer after the stack action points to the last
data byte transferred. It is always decremented by one before trans-
ferring the first byte of data on a CALL, PUSH, or RST.

The corresponding action taken on return, which is either a return
from interrupt or a return from subroutine, is to reload the program
counter from the two stack locations and to leave the stack pointer
set to the location above the last data byte pulled, in preparation
for a new push or pull. The POP instructions work similarly except
that two bytes of data representing the register pairs or the A register
and cpu flags are involved.

The stack pointer in the 8080 may be incremented or decremented
by the INX SP and DCX SP instructions.

STACK OPERATIONS—6800

The stack pointer in the 6800 may be loaded by an LDS instruc-
tion. The load may be either an immediate value or a memory operand
representing the top of stack. Here, unlike the 8080, the stack
pointer is used as a pointer to the current top of stack for a push
and then decremented.

TOPS EQU $DFFF TOP OF STACK

LDS #TOPS INITIALIZE STACK P

A JSR instruction results in the following storage in the stack:

STACK LOCATION N PC least significant 8 bits
N-1 PC most significant 8 bits

128

Pushes transfer either the contents of the A accumulator or the con-
tents of the B accumulator to the current stack location. Current
status is stored in the stack during execution of the Software Inter-
rupt instruction, SWI, during execution of the Wait for Interrupt in-
struction, WAI, or in response to either a NMI or external interrupt.
The status is stored as follows:

STACK LOCATION N PC least significant 8 bits
N-1 PC most significant 8 bits
N-2 Index reg Is 8 bits

N-3 Index reg ms 8 bits

N—4 Accumulator A

N-5 Accumulator B

N—-6 Condition codes

The stack pointer is adjusted to point to the next available stack
location.

Since the number of bytes pushed into the stack by a JSR differs
from the number pushed for an interrupt, there are two separate re-
turns, Return from Subroutine and Return from Interrupt, RTS and
RTI, respectively. The RTS reloads the program counter only, while
the RTI restores the data in reverse order from the manner in which
it was pushed. PULA and PULB pull one byte of data from the
stack, restoring either the A or B accumulator.

The stack pointer may be incremented or decremented by the
INS or DES instructions. It may also be stored by the STX instruc-
tion, transferred to the index register by the TSX instruction, or
loaded by the index register by the TXS instruction.

STACK OPERATIONS—6502

The stack pointer in the 6502 refers to the page 1 location of the
stack. It can be loaded via the X index register by first loading the
index register and then performing a TXS instruction to transfer the
contents of the index register to the stack pointer. The stack pointer
always points to the next available stack location, so the stack
pointer must be initialized with the true top of stack.

TOPS EQU $DFFF TOP OF STACK

LDX #TOPS
TXS INITIALIZE STACK POINTER

The JSR operates similarly to the 6800. The link (current contents
of the program counter) is stored into the stack as follows:

STACK LOCATION N PC most significant 8 bits
N-1 PC least significant 8 bits

129

Pushes push the contents of either the accumluator or the processor
status register into the stack (PHA or PHP). Interrupt action in
regard to the stack causes the contents of the program counter and
flags (status register) to be pushed into the stack in the following
manner:

STACK LOCATION N PC most significant 8 bits
N—-1 PC least significant 8 bits
N-2 Processor status register (flags)

The stack pointer is then adjusted to point to the next available
stack location.

As in the 6800, there is a separate Return from Interrupt (RTI)
and Return from Subroutine (RTS). Stack action results in data
being pulled from the stack in reverse order from the way it was
stored. Likewise, the PLA and PLP instructions pull either the ac-
cumulator or flags from the stack.

Unfortunately, there is no increment or decrement stack pointer
instruction. The stack pointer can be modified by loading the index
register with the stack pointer, incrementing or decrementing the
index register the proper amount, and transferring the contents of the
index register back to the stack pointer.

FOLLY TSX GET STACK POINTER
INX
INX BYPASS LAST TWO ARGS
TXS RESTORE SP
RTS RETURN

130

CHAPTER

19

Table Operations

Tables are sets of data in contiguous locations. Either by the dis-
placement within the table or by other data associated with the table
entry, a table may be used to correlate one piece of data with another.
Each table is composed of data entries of a certain length. The total
length of the table is the maximum number of data entries times the
entry length. Within each entry, there may be subentries which may
still be broken down further. Data is grouped within the table by a
variety of means.

The displacement of the entry within the table may be used to look
up the data item. An example of this would be a table of sine values
that is 90 bytes long, with each entry within the table having a length
of one byte. The coarse sine value of any angle from 0 to 90° could
be found by adding the integer value of the angle to the start of the
table and picking up the corresponding entry. The entry is assumed to
be scaled by 256, that is, the value picked up would be the fractional
sine value X 256, or an unsigned integer value from 00000000,
through 11111111..

The opposite type of table from this first example is the type of
table where the data item or the content of the table defines the dis-
placement to be used in other operations. This might be used, for in-
stance, in a system monitor routine. A system monitor would read
user commands and perform -a different function for each command.
An ASCII “A” might cause the monitor to branch to the assembler,
an “E” might cause the editor to be invoked, and a “D” might cause
the debug program to be entered. In the actual implementation of the
code to take a given character command, two tables might be used.
The first table would consist of a table of all commands. If there were
13 one-byte commands, the table would be 13 bytes long, and each

131

one-byte entry would consist of the character for that command. The
second table would consist of 13 two-byte entries, each entry defining
the corresponding address of the proper routine to be entered for the
command. Note that there is a one-for-one correspondence between
the two tables. The nth entry in TABL2 holds the address of the rou-
tine to be entered for the one-letter command given by the nth entry
of TABLI. When a system command is input by the user the ASCII
character is saved and a search is made of TABLI for the character.
If it is found, the displacement of the character from the start of
TABL1 is multiplied by two to give a new index value. This index
value is used to pick up the corresponding entry in TABL2, which is
the transfer address for the system routine.

Another type of table is one in which the index is unimportant be-
cause a key is used to access information. Let’s suppose that we have
a directory of floppy disc files. Each entry in the directory table is fifteen
bytes long. The first six bytes are the name of the file in ASCII. The
next byte is the starting sector of the file on the disc. The eight and
ninth bytes are the address in memory into which the file should be
read. The tenth byte is a checksum of the file, the eleventh byte is a
qualifier that defines the type of data in the file, and the four remain-
ing bytes are spares. When a user requests the system monitor to
READ a certain file from the floppy, a search will be made of the
directory table for the given file name. The search will consist of a
six-byte comparison at DISCD, DISCD+15, DISCD+30, and so
forth, down through directory DISCD. If the file name is found, the
additional parameters defining the file will be read and the disc file
will be read into core accordingly. The index of the entry was unim-
portant in this case, except perhaps to define the end of the table.

Tables of the latter type may have data entries within the table
ordered in different ways. Data entries may be completely unordered.
The names of floppy disc files in the previous example might have
been entered as they were created, generating a table of file names in
no particular order. A second approach would be to arrange the file
names in alphabetical order. As each new name was entered it would
be merged into the table to preserve the alphabetical nature of the
entries.

In a table of unordered entries, a sequential search must be made
of the table to find the desired entry. The table is searched from be-
ginning to end, with a comparison being made of each entry to the
desired key. The average number of entries processed in this type of
search is the number of table entries divided by two.

When a table is ordered in alphabetical or another type of ascending
or descending order by entry, a sequential search can still be made,
but there are several other types of searches that are much faster.
One of these is the binary search. In the binary search the remaining

132

area of the table to be searched is halved for each comparison. The
half to be searched in the next comparison is determined by the rela-
tion of the current entry and the key. As an example of this type of
search, take the following table, which has names in alphabetical
order. The key is BACH. As each entry is picked, up, the current
entry is compared with BACH. If BACH is greater in numeric value
than the current entry the next half to be searched is located further
down the table; if BACH is less, then the next half to be searched is
further up the table. As each comparison is made, the remaining area
to be searched is reduced by one-half. The first comparison is made

Entry 1 BACH Fourth compare
BIZET Third compare
DVORAK Second compare
FRANCK

LISZT First compare
RAVEL

ROSSINNI

STRAUSS

VERDI

OoeINUn b wio

half-way through the table. Each new comparison is made at the half-
way entry of the remaining area. The worst-case number of compari-
sons that must be made to find any entry is given by

N = log (total number of entries) zy + 1

where RU stands for “rounded up.” In this example log,(9)ry = 4,
as log, (9) =4.XX. Another way of describing the formula is the
following: Take the total number of entries and find the largest power
of two that will divide into the total number. If the division is even,
add one; if the division is not even, add two. The +1 portion of the
formula modifies the binary search for the case where the key is not
found. If the next entry to be searched is the same as the last, the
search is done and the key is not in the table.

A third type of search is based on a hash. A hash is nothing more
than some arbritrary formula to find a key to look up an entry in a
table of hashes. The hash value may be unique or not unique. One way
to implement the symbol-table search of an assembler program would
be to perform a binary search on each string of ASCII characters rep-
resenting a symbol. Even a binary search takes time, however, when
a long string of data must be compared. If the number of bytes to be
compared could be reduced, than the search might be significantly
speeded up. By allowing only alphabetic, numeric, and a few special
characters in a symbol name a number can be derived for each char-
acter that can be represented by 0 through 39, as shown in the list in
the following page.

133

ASCII Base 40 ASCII Base 40 ASCII Base 40

° 0 B 14 P 28
/ 1 C 15 Q 29
0 2 D 16 R 30
1 3 E 17 S 31
2 4 F 18 T 32
3 5 G 19 U 33
4 6 H 20 \Y% 34
5 7 I 21 w 35
6 8 J 22 X 36
7 9 K 23 Y 37
8 10 L 24 Z 38
9 11 M 25 blank 39
@ 12 N 26

A 13 O 27

Now it happens that three base-40 digits fit nicely in 16 bits as
40% = 64,000 < 2'% = 65,536 and that a six-character symbolic name
could be hashed into four bytes (4 X 8 = 32 bits), a hash which is
in this case a unique hash. The binary search could now be done using
a four-byte key instead of six bytes with consequent savings in com-
parison times.

Hashes that result in values that are not unique may also be used
to advantage. A hash of a five-character symbol could produce a
single-byte value. Although the value might not be unique (the sym-
bols VALUE and VALUU might produce the same hash value, for
example) the chances are very good that most of the hashes produced
in a typical assembly would be unique. Any values that had more than
one symbol associated with it could point to a short list of all the
symbols associated with that hash value and the overall searching
process would still be very efficient.

Another type of data structure is an array. A table is a one-dimen-
sional array when the entry in the table is referenced by the displace-
ment from the beginning of the table, or the index. Data can be ar-
ranged in two-dimensional arrays or even in n-dimensional arrays.
A two-dimensional array can be thought of as a checkerboard matrix
where a data element is indexed by row number and column number.
A three-dimensional array can be visualized as a three-dimensional
tic-tac-toe arrangement where the data elements are indexed by x, y,
and z coordinates. Arrays of n dimensions are harder to visualize, but
find a great deal of use in mathematically oriented programming. The
techniques for accessing two-dimensional arrays will be demonstrated
in this chapter. These techniques can be expanded by the reader to
cover multidimensional accesses.

134

TABLE OPERATIONS—8080

The 8080 is oriented toward table entries that are multiples of 8 bits
in length, as are all the microprocessors discussed here. It is convenient
to index through a table in a sequential search by using the B,C, D,E,
or H,L register pairs as index registers as in the following example,
where the key is contained in the B register.

SRCHT LDA KEY

MOV BA

MVI C,TABL

LXI D, TABI
LOOP DCR C

JZ NFND

LDAX D

CMP B

JZ FND

INX D

JMP LOOP
TAB1 DS

TABL EQU $—TAB1+H1

LOAD KEY FOR SEARCH
SETUP B WITH KEY
SETUP TABLE LENGTH+-1
GET TABLE START
DECREMENT INDEX

GO IF NOT FOUND

GET NEXT ENTRY
COMPARE ENTRY TO KEY
GO IF FND

BUMP POINTER*

LENGTH+-1

The instruction at * bumps the pointer by one byte. For an n-byte
entry the pointer could be adjusted for n bytes. This routine is gener-
alized to work with any length of table including one of zero length.

Comparisons of more than one byte are more tedious. The follow-
ing routine compares a two-byte key with a two-byte entry. The size
of each entry is three bytes with the third byte possibly containing
additional data about the entry. Two comparisons are made and if
there is no match the index registers are incremented past the third
byte of the entry in preparation for the next entry.

SRCHT MVI
LHLD
LXI

LOOP MOV
Sul
MOV
Jz
LDAX
CMP
INX
JNZ
LDAX
CMP
Jz

NEXT INX

B,TABL
KEY

D, TAB1
AB

A3

B,A
NFND

TABLE LENGTH4-3
KEY TO HL
START OF TABLE

INDEX~—3

GO IF NOT FOUND
GET FIRST BYTE
COMPARE 18T BYTE
POINT TO NEXT BYTE
GO IF NO MATCH
GET SECOND BYTE
COMPARE 2ND BYTE
GO IF MATCH
BYPASS NEXT BYTE

135

JMP LOOP TRY AGAIN

TAB1 DS .
TABL EQU $-TAB1+43 LENGTH + 3

Another method that might be used to terminate a comparison
through a table is to put a unique value at the end of the table. If the
table is made up of ASCII data, for example, the terminating entry in
the table might be —1, which is not a valid ASCII character. This
allows for tables of variable length and simplifies the checks for the
table end. The search in the first example would be shortened to:

SRCHT LDA KEY LOAD KEY FOR SEARCH
MOV BA SETUP B WITH KEY
LXi D, TAB1 GET TABLE START
LOOP LDAX D GET NEXT ENTRY
CPI —1
JZ NFND GO IF NOT FOUND
CMP B COMPARE ENTRY TO KEY
JZ FND GO IF FOUND
INX D BUMP POINTER
JMP LOOP

The general method for picking up data from arrays depends upon
the arrangement of the array in memory. If the array has »n columns
and m rows then the total number of elements is n X m. The array
can be arranged in memory in the order Co,R,, Co,R;, Co,Rs, . . . ,
Co,Ry —1, C1,R,, . . . or can be arranged R,Cy, R(,Cy, . .., Ro,Co —1,
R;,Cy, . . . In the first case the displacement from the start of the array
storage area is given by (C X m) + R, where C is the column number
(beginning with 0), m is the number of rows, and R is the row number
(beginning with 0). The second case displacement is determined by
(R X n) + C, where n is the number of columns. This same access
arrangement can be expanded into multidimensional arrays. A two-
dimensional access example follows. Here the row of the array is in
CURRW and the column of the array is in CURCL and the array ele-
ments are one byte in length, arranged in Co,R, fashion. The number
of rows in the array is variable and is given in NOROW. Use is made

GETAR LDA CURCL GET COL #
MOV B,A MULTIPLICAND
LDA NOROW # OF ROWS
CALL MULT CXMINA
MOV BA
LDA CURRW GET RW #
ADD B CXM+R
LXI D0
MOV EA MOVE DISPLACEMENT

136

LXI1 H,ARRAY START OF ARRAY
DAD D START + DISP
MOV M GET ELEMENT

of a single-precision multiply called MULT which returns the product
in A,
TABLE OPERATIONS—6800

A sequential search through a table terminated by a —1 is shown
below. Each entry is five bytes long with the search being made on a
one-byte key which is the first byte of every entry. Incrementing the

SRCHT LDAA KEY PICKUP KEY
LDX #TAB1 START OF TABLE
LDAB #-—1 TERMINATION
LOOP CMPB X CHECK TERMINATE
BEQ NFND GO IF NOT FOUND
CMPA X CHECK BYTE
BEQ FND GO IF FOUND
INX
INX
INX
INX
INX POINT TO NEXT ENTRY
JMP LOOP

index register more than a byte or two at a time is a problem not only
on the 6800, but on the other two microprocessors as well. Perhaps a
subroutine could have been used for a double-precision increment of
n, but the speed and storage of five INXs is probably most efficient.

The equivalent array access for the same type of two-dimensional
array as discussed for the 8080 is shown below. Here the array is

GETAR LDAB CURCL GET COL #
LDAA NOROW MULTIPLIER
JSR MULT CXMIN A
ADDA CURRW CXM+4+ R
STAA INXR+-1
CLR INXR DISP IN INXR, INXR-+
LDX INXR SETUP DISP

LDAA ARRAY,X GET ELEMENT

small enough to be in page 0. If the array had been somewhere else in
memory then the LDAA ARRAY,X would not have worked, since
ARRAY could not have been resolved in the one-byte displacement
of the instruction. In that case, the following code might have been
used at the expense of reentrancy. Here the displacement in the LDAA

137

GETAR LDAB CURCL GET COL #
LDAA NOROW MULTIPLIER

JSR MULT CXMINA

ADDA CURRW CXM+ R

STAA DISP MODIFY INSTRUCTION

LDX #ARRAY START OF ARRAY

LDAA 0OX THIS INSTRUCTION MODIFIED

DISP EQU "1

instruction is dynamically modified with the displacement of the array
element from the start of the array. The index register is then loaded
with the address of the start of the array, and the array element can
be picked up with the modified LDAA.

TABLE OPERATIONS--6502

Sequential searching through a table terminated by a —1 is some-
what similar to the 6800 in the 6502 except that it is easier to modify
the index registers as they are only single-precision values.

SRCHT LDX #0 INITIALIZE INDEX
LOOP LDA TAB1X GET TABLE ENTRY
CMP MNUS1 COMPARE TO —1

BEQ NFND GO IF NOT FOUND
CMP KEY COMPARE TO KEY
BEQ FND GO IF FOUND

TXA INDEX TO A

CLC CLEAR C

ADC #5 ADD 5

TAX NOW HAVE INDEX + 5
JMP LOOP GO FOR NEXT ENTRY

Many times it is convenient to index through several tables with the
same index value applied to each table. In a system that can run five
user’s programs simultaneously (actually concurrently) in memory at
the same time, information about the user’s programs might be con-
tained in a set of tables indexed by a user number, 0 through 5.
USATB might be a table containing the starting address of the user’s
program, UTOPT might contain the type of program, and UEOPT
might contain the address of the end of the user’s program. Here’s an
example of how the user number in one of the index registers could
be used to pick up information if the X index always had the current
user number through the monitor program code.

LDX USRNO GET USER #
CPX #-—1
BEQ NOUSR GO IF NO USER

138

LDA

LDA

LDA
USRNO i-’CB
USATB RMB

UTOPT RMB
UEOPT RMB

Equivalent code for an

GETAR

USATB,X

UTOPT,X

UEOPT,X

—1

o g o

LDX CURCL
LDA NOROW
JSR MULT
CLC

ADC CURRW
TAX

GET USER’'S START

GET USER’S TYPE

GET USER’S END LOCATION

HOLDS USER START
HOLDS USER TYPE
HOLDS USER END LOC

access of a two-dimensional array follows.

GET COL #
MULTIPLIER
CXMINA

CXM+ R
NOW HAVE INDEX

LDA ARRAY,X GET ELEMENT

Here the code is very short and sweet as the displacement field of the
LDA instruction can be resolved in two bytes.

FURTHER EXAMPLES

Further examples of table operations are given in the programming
algorithms part (Chap. 25) of this book.

139

CHAPTER

20

List Processing

Although tables and arrays are subsets of list data structures
when discussed formally, the lists discussed here will refer to a
special type of data structure. An analogy to a computerized list
would be a game to find hidden objects. The player is given a slip
of paper upon which is written the start of the hunt. The player
then finds the starting place, picks up the object, and finds another
piece of paper with directions to the next hiding place. The search
then continues with each place that an object is stored yielding new
directions. Finally, the last object, the grand prize, is found and the
game ends.

The computerized list is similar to the game. A variable in mem-
ory points to the head of the list, or the first item in the list. Each
entry in the list is made up of the data item itself and a pointer
to the next data item in the list. In this way the items in the list
are chained in forward fashion, each item always having a pointer
that defines the location of the next item. The last item in the list
is defined by a variable in memory that points to the tail of the list,
or last item. The items in the list do not have to occupy contiguous
memory locations and may be spread throughout memory in any
fashion. A representative single-ended list such as we have been
describing is shown on the following page. Each pointer is 16 bits long
and the data item in the list is one byte long.

In this case either TAIL or the next address pointer could define
the last item in the list. The next address value of 177777 would
be a flag indicating that this entry was the last entry in the list.

A double-ended list would not point forward to the next data
item, but would point backwards to the last data item. In the above
example there would be not only a two-byte forward address, but a

140

LOCATION 1000 003

1001 002

1002 011

1003

1004 unused (HEAD) = 1006
1005

1006 010 (TAIL) = 1014
1007 002

1010 000

1011 005

1012 002

1013 017 Data items in list =
1014 100 010,003,005,177,100
1015 377

1016 377

1017 177

1020 002

1021 014

two-byte backward address. A value of all ones would denote the
end of the list in either direction, and HEAD and TAIL would still
point to the beginning and end items in the list.

As the reader can see, a great deal more storage is taken up by
listing data in this fashion rather than by constructing a tabular list
of consecutive values. The great advantage of a list, however, is the
ability to easily merge, delete, and modify new data items. In a table
of increasing values a new value can be inserted by moving all the
values below the insertion point downwards. Similarly, deleting a
value leaves a gap that must be filled with data below by moving it
up in a block. For long tables, this block movement of data becomes
very expensive in terms of processing time. If a table is 200 bytes
long, the average entry or deletion would necessitate moving 100
bytes of data, perhaps 25 microseconds for each byte of data moved
or 2.5 milliseconds for every insertion or deletion. In addition to the
time spent in moving the data, there is a search time to find the entry
or deletion point of perhaps 3 milliseconds as each entry is picked up,
compared to the key, the index is incremented and compared to the
last table value, and so forth. In a list the search time would be
about the same, or could even be shortened by having intermediate
pointers that point to locations part way down the list. The block
movement time, however, would be made almost nothing by chang-
ing the address links in the list. To delete data item 3 in the above
list, for example, the address pointer at locations 1007,1010 would

141

be changed to 002,011 and that data item would be completely
deleted from the string. To insert a data item between 177 and 100,
locations 1020,1021 would be changed to the location of the new
entry, say 1003, the new data item would be put at location 1003,
and 002,014 would be put at locations 1004,1005 to point to the
last data, and the insertion would be completed.

The insertion or deletion of data in a double-ended list is a little
more work in that two sets of address pointers have to be main-
tained in each entry, but the reader can see that the operation is
still very straightforward and that there is virutally no time spent
in juggling address pointers around in comparison to moving data.

While the above describes the physical method of inserting or
deleting one item in a list, what is the implementation of taking an
unsorted list of items and arranging them in ascending order? One
way to do this would be to search the entire list for the lowest-
valued item, then start a new list with that item at the head. The
next lowest item would then be found and linked to the first, and
the process would be repeated until the tail of the list was found.
This method, although it would work, requires two large memory
areas, one for the old list and one for the new. If the list was made
up of 100 items 100 passes through the list would have to be made
with about 5000 comparisons being made, as the first search would
involve 100 items, the next 99, the next 98, and so forth.

An alternative method of ordering the list is called a bubble sort.
It uses much less memory than the other type of sort. In the bubble
sort, passes through the list are made as before, but each data item
is compared to the previous data item and swapped with that data
item if it is of lower value. In this manner, the lower-valued data
items (lighter?) bubble to the top of the list. The sort is complete
when no swaps are made. Let’s see how this works, remembering
that if the next data item is lower-valued it is swapped with the
previous one, and if it is higher-valued no swap is made. The links
in the list are left out for clarity. Individual items would be swapped
by changing address pointers just as was done in the insert and
delete examples. See p. 143.

In this example it took six passes plus one final pass to determine
that there were no further swaps to be made to sort the entire list.
The actual number of comparisons is slightly more than the first
type of search, but no additional memory for the new list was re-
quired. This can be very beneficial in any size system, since the
larger the memory area for the sort, the less overhead there is in
bringing in new data from the secondary storage device, and the
more efficient the sort.

Sorts are used very frequently in business-oriented processing and
information retrieval systems. If the reader’s microcomputer system

142

Bubble Sort

Before After After After
Pass 1 Pass 2 Pass 3

1 1 1 1
17 17 2 2
101 2 5 5
2 5 17 17
5 ¢ 45 37 16
45 37 16 3
37 16 3 37
16 3 45 45
3 101 101 101

After After After
Pass 4 Pass 5 Pass 6

1 1 1

2 2 2

5 5 3
16 3 5
3.3 16 16
17 17 17
37 37 37
45 45 45
101 101 101

will be used to produce mailing lists, to catalog documents, or to
order any data that is entered into the system in unordered or on
an as required basis, than the efficiency and speed of the sort pro-
gram will become very important.

Another related operation to the sort is the operation of merging
data. Here the data is in ordered form, but in two separate lists.
Let’s somewhat arbritrarily call one the master list and one the
update list. The entries in the update list are to be merged into the
entries in the master list to produce a new master list that has
ordered entries. Here the method of merging the data is to pick up
the first entry in the update list and then search the master list until
the insertion point is found. The current update entry is then in-
serted, the pointers changed, and the next update entry is then used
to search the master list. When the last update entry has been in-
serted, the new master list is completed. Although the bubble sort
method could be used to add the new entries to the master list,
this would be a rather inefficient way of solving the problem when
the two lists are already ordered.

143

As can be surmised from the above, some processing of data might
involve several subtasks of ordering one list, ordering another, merg-
ing the two lists, and so forth.

LIST PROCESSING—8080

The following 8080 example searches a single-ended Iist for a
value held in the A register. HEAD points to the head of the list
and the tail of the list is defined by all ones in the address link.
The data and address link are arranged as shown below.

ENTRY --0 8-bit data value
+1 8-Isb of address link
+2 8-msb of address link

LHLD HEAD LOAD HEAD ADDRESS
LOOP LDA VALUE SEARCH VALUE

CMP M COMPARE WITH ENTRY
BEQ FND GO IF FOUND
INX H POINT TO LSB OF LINK
XCHG HL TO DE
LDAX D LOAD LSB OF LINK
MOV LA MOVE TO L
INX D POINT TO MSB OF LINK
LDAX D LOAD MSB OF LINK
MOV HA MOVE TO H
CPI —1 COMPARE FOR TAIL
JNZ LOOP GO IF NOT TAIL

NFND . NOT FOUND

The not found portion of code is executed when a —1 is found in the
most significant byte of the link address. If the link is not 377/XXX
and the current value is not the search value, then the link address
is moved into the H,L register pair in preparation for picking up
the next entry.

LIST PROCESSING—6800

The code for a search of the same type of list as above for the
6800 follows. Here the code is facilitated because the index register
can be loaded by an indexed type of addressing. This means that
if the index register points to the link address, that link may be easily
loaded into the index register by performing an I.LDX X.

LDX HEAD LOAD HEAD ADDRESS
LDAA VALUE SEARCH VALUE

LOOP CMPA X COMPARE CURRENT WITH VALUE
BEQ FND GO IF FOUND

144

INX POINT TO LINK ADDRESS

LDX X LOAD NEW LINK

CPX #-1 COMPARE TO TAIL VALUE

BNE LOOP GO IF NOT END OF LIST
NFND . NOT FOUND

A bubble sort may also be performed on a table of data, espe-
cially if a list is not necessary for merging new data. The following
example assumes a table of 8-bit data values. The data is to be
sorted by a bubble sort. A memory flag word, SWAP, is zero until
the first two bytes of data are swapped in the sorting process. If on
any pass down through the table no swap is necessary, SWAP
is never set and the sort is terminated. There are two nested loops
in the routine. The first, from LOOP to NEXT-1, checks every table
entry and swaps the current entry with the last if necessary. On the
last entry of the table, the index value equals TABE and the second
loop is entered, which tests SWAP at NEXT and loops back to LOP1
if at least one SWAP was done during the first pass through the table.
LOP1 clears SWAP and sets up the index to the beginning of the
table for the next sort.

LOP1 CLR SWAP CLEAR SWAP FLAG
LDX #TAB1—1 INITIALIZE INDEX
LOOP INX BUMP INDEX
CPX #TABE AT END OF TABLE?
BEQ NEXT GO IF YES
LDAA 0, X LOAD TABLE ENTRY
LDAB 1,X LOAD NEXT ENTRY
CBA COMPARE TWO ENTRIES
BLE LOOP GO IF ORDER OK
INC SWAP SET SWAP FLAG
STAA 11X SWAP
STAB 0X
JMP LOOP GO FOR NEXT
NEXT TST SWAP TEST FOR SWAP
BNE LOP1 GO IF NOT DONE
DONE . SORTED
TABt RMB ... TABLE
TABE EQU * LAST LOCATION IN TABLE+1

LIST PROCESSING—6502

The code for a search of the same type as above is shown below
for the 6502. Here some modifications of a page O pointer are neces-
sary to enable addressing of the 16-bit link. These addresses, of
course, are not known beforehand, and this is one of several ap-

145

proaches to dynamically changing the effective address as new link
addresses are found. The pointer in page O holds the least significant
8 bits of the link address in DEST and the most significant 8 bits in
DEST+1. The 16 bits of DEST are used in conjunction with the Y
register in an indirect indexed addressing mode of operation. The
reader will recall that in this mode a page O indirect address is
picked up and the contents of the Y index register are added to it to
form the new effective address. By using DEST to hold the address
of each new entry in the list, the three bytes of the entry may be
picked up by indices of 0, 1, and 2 in the Y register.

LDA HEAD MSB OF HEAD ADDRESS
STA DEST+H1
LDA HEAD-+1 LSB OF HEAD ADDRESS
STA DEST
LOOP LDY #0 INDEX TO VALUE
LDA VALUE SEARCH VALUE
CMP (DEST),Y COMPARE WITH ENTRY
BEQ FND . GO IF FOUND
INY INDEX TO LSB OF LINK
LDA (DEST)Y GET LSB
PHA SAVE
INY INDEX TO MSB OF LINK
LDA (DEST)Y GET MSB
CMP #—1 TEST FOR TAIL
BEQ NFND GO IF NOT FND
STA DEST+1 INITIALIZE MSB
PLA GET LSB OF LINK
STA DEST INITIALIZE LSB
JMP LOOP CONTINUE
NFND . NOT FOUND

146

CHAPTER

21

Bit Processing and
Manipulation

Bit processing and manipulation is necessary in microcomputers
and in all computers because not everything can be arranged in 8-bit
fields in a program or hardware device. We've already seen the need
for 5-bit codes in Baudot representation, program flags with the least
significant bit or most significant bit or both set, and instruction fields
that represent register addresses. Suffice it to say that at one time
or another a programmer will have to deal with the problem of re-
trieving data from a field within 8 bits, testing the field, or merging
the field into the 8-bit byte.

Retrieving a one- to seven-bit field from an 8-bit byte is typically
handled by masking out the field and shifting it right until the field
is aligned so that its least significant bit is in bit position 0. The con-
tents of the accumulator or memory location then hold the true
value of the field. Suppose that an 8080 instruction set is to be
simulated on a 6800 microcomputer. An 8080 program will be
loaded into the 6800 microcomputer and the 6800 will interpret the
8080 instructions by analyzing each instruction and then simulating
the 8080 registers and flags in software pseudo-registers and flags.
If an LXI RP instruction is detected, the 6800 program will simulate
the 8080 instruction by loading the specified register pair, represented
by two memory locations, with the intermediate data from bytes 2
and 3 of the instruction. To do this, the RP field of the first byte of
the 8080 instruction must be analyzed to determine which pseudo-
register pair must be loaded. The implementation of this is as follows:

147

1. The first byte of the instruction is ANDed with 00110000, This
masks out all bits but the RP field.
instruction byte 00RP0001
AND value 00110000

AND result OORPO000O
2. The RP field is now shifted right four bits to align it (right
justify it) with the Isb.
AND result OORPO0O0OO
shift 4 bits 000000RP i
3. The result may now be tested for the value of 00, 01, 10, or 11,
representing register pairs B,C, D,E, H,L, or SP, respectively.

Note that in this case the shift was a logical right shift or rotate.
Although an arithmetic shift would have worked, it’s best to get into
the habit of not using one in this alignment operation lest the reader
forget when the sign bit happens to be in the affected field. The sec-
ond step is optional if the field could be used without alignment.
Many times the alignment makes further use of the field less con-
fusing and more convenient, however.

Storing a one- to seven-bit field in a byte involves ANDing the af-
fected byte to reset the field to all zeros, and then merging the
new value of the field into the byte by an inclusive or operation.
Suppose that the 6800 is being used to assemble an 8080 program.
(There’s no reason that a cross-assembler such as this would not be
just as efficient as an 8080 microcomputer assembling 8080 program
code.) In constructing the 8080 MOV R,M instruction, the 6800
has produced the following code for the one-byte instruction:
01XXX110,. The Xs represent indeterminate bits, or in program-
ming language, garbage. Having read the argument from the assembler
source line the 6800 program discovers that register E is to be used
to make the instruction MOV E,M. It then takes the 011, value that
will represent the E code and stores it in the XXX field as shown in
the following steps:

1. The instruction skeleton is ANDed with 11000111, to reset the
XXX to zero.
skeleton 01XXX110
AND value 11000111

AND result 01000110
2. The 011 value is shifted three bits to the left to align it in the
proper field position.
code 00000011
aligned 00011000

148

3. The aligned value is now merged into the skeleton by an oOR.
skeleton 01000110
aligned
code 00011000

OR result 01011110

The ANDing operation initially is not necessary if the programmer is
certain that the field is already zero.

Testing a field within a byte has several alternatives. If only a
one-bit field is to be tested, then an AND can be performed and the
zero flag tested for zero or nonzero (zero or one in the field). If
more than one bit is to be tested the field may be retrieved by the
method above of ANDing and shifting the result to align the field
at the right end of the register. Another alternative that avoids the
shifting operation would be to AND out the field, and then test the
result by a number scaled up by the appropriate amount. As an
example of the last method, suppose that we would like to ascertain
whether a three-bit field in bits 6-4 of the byte holds a value greater
than 100,. In other words, is the byte X101 XXXX, X110XXXX, or
X111XXXX,, where the Xs are bits other than the field? The opera-
tion would be performed as follows:

1. AND the byte ¢ontaining the field with 01110000.
byte XFFFXXXX
AND 01110000

result OFFF0000
2. The result of the AND is FFF, X 16, so a comparison can be
made with 01010000.,.
Compare OFFF0000 with 01010000.
3. If the result is positive then the field must contain 101, 110, or
111.
01010000 01100000 01110000
—01010000 —01010000 —01010000

00000000 00010000 00100000

The above operations have all treated fields as one to seven bits
within a basic byte. Fields of this size will occur in a large number
of applications. Fields larger than 8 bits are, of course, possible.
A field may be any number of bits. When larger fields are necessary,
it is convenient to make the fields multiples of 8 bits to take ad-
vantage of the efficiency of working with bytes in the microcomputer.
This is also true for groups of fields, such as table entries. Suppose
that we have specified a set of characters which are to be output
to a vdm. The set of characters is held in a table. Each entry of the
table holds the x coordinate, or character position along the line,

149

the y coordinate, or line number, and the character itself. Now x
can be 0-31,, ¥ can be 0-15,, and the character is a seven-bit
character. What is the best way to store the data in a table?
The x coordinate can be held in 5 bits, the y in 4 bits, and the
character in 7 bits, for a total of 16 bits. One possible arrangement
" would be as follows:

Byte 0 XXXXXYYY X, 3 bitsof Y
Byte 1 YCCCCCCC 1 bit of Y, 7 bits of character

This arrangement, however, would require quite a bit of manipula-
tion to get the YYYY value; data from two bytes would have to be
.merged. On the other hand the data is packed quite nicely and the
efficiency in terms of memory storage is optimized. The easiest and
fastest access method would be to store the data in three bytes:

Byte 0 000XXXXX X
Byte I 0000YYYY Y
Byte 2 0CCCCCCC character

In this case the data takes up 50 percent more storage, but as long
as the number of points is small, this is not an important factor.
Either way will work, with one being more efficient in storage, and
the other more efficient in terms of processing time.

BIT PROCESSING—8080

The general method for retrieving a field from within a byte is
shown in the following example. This code retrieves a field of 3 bits
from within the following byte, XXFFFXXX,, where X is other
than the field and FFF is the field itself. The field is right justified
in the A register at the end of the routine.

GETFD LDA WORD WORD HOLDS FIELD

RRC

RRC

RRC ALIGN FFF

ANl 07 MASK OUT FFF

Note that here it was convenient to shift and align the field first to
avoid having to reset the carry on the first RRC instruction. Storing
a field is identical with the previously discussed method. Here the
same field is stored.

STOFD LDA WORD WORD TO HOLD FIELD
ANI 0307 MASK OUT FIELD
MOV BA HOLD SKELETON

150

LDA FIELD GET FIELD IN FORM FFF

RLC

RLC ALIGN FIELD — ZEROES
RLC TO VACATED BITS

ORA B MERGE FIELD INTO WORD

Testing a one-bit field within a byte can be easily done by ANDing
the byte with an immediate value that defines the bit to be tested and
jumping on a JZ or JNZ (0 or 1).

TESTB LDA WORD CONTAINS FIELD
ANl MASK MASK HAS 1 IN TEST BIT POS
JZ ZERO GO IF BIT=0

ONE . BIT=1

Whenever possible code should be parameterized to be usable in
the general case, so that the wheel is patented only once. An example
of this is in the following code, which gets the nth bit (7 through 0)
out of the mth word of a table. One possible use for this would
be in finding the value of the dot in a given matrix that is being dis-
played on a video display, the dot being either off or on. Another
routine first converts the x,y coordinate of the dot to a displacement
m from the start of the buffer and the position of the dot within
the word »n. Elements m and »n are in locations EM and EN, respec-
tively.

READB LXI H,BUF GET START OF BUFFER

XCHG SAVE IN DE
LDA EM M
MOV LA SETUP H,L FOR ADD
Mvi H,0
DAD D FIND START OF BUFFER-+M
LDA EN
MOV CA INITIALIZE CNT(N)
MOV AM GET WORD

LOP DCR C DECREMENT INDEX
JM FND GO IF DONE SHIFTING
RRC ROTATE BIT RIGHT
JMP LOP

FND ANI 1 FIND BIT, 0 OR 1
RET

A similar type of routine could be used to store a bit in bit position
n in word m of a table, or the routine could even be expanded to
parameterize the number of bits in the field, the length of table
entries, and so forth.

151

BIT PROCESSING—6800

The method of retrieving a variable-length field within a memory
byte is identical with the 8080 approach.

GETFD LDAA WORD WORD HOLDS FIELD

RORA
RORA
RORA ALIGN FIELD

ANDA #7 MASK OUT FFF

Similarly, the storage of an »-bit field is handled by the following:

STOFD LDAA WORD WORD TO HOLD FIELD
ANDA #3$C7 MASK OUT FIELD
ASL FIELD
ASL FIELD
ASL FIELD ALIGN FIELD
ORAA FIELD MERGE FIELD INTO WORD

Here the shifting of the field could be accomplished by shifting the
memory location containing the field, although the field could have
been put into the B accumulator for shifting.

Testing a one-bit field inside a byte is also identical with the 8080
approach.

TEST LDAA WORD CONTAINS BIT TO BE TESTED
ANDA #MASK MASK HAS 1 IN BIT POSTN
BEQ ZERO GO IF ZERO

ONE . BIT=1

Testing the sign bit may be done with the TST instruction mentioned
previously which sets the zero or minus flag.

TEST TST WORD TEST BIT 7
BMI ONE GO IF SET
ZERO . BIT=0

Sometimes it is necessary or convenient to test bits through the
carry or sign bit position. An example of this would be the follow-
ing routine, which tests the 8 bits in a byte by rotating left into the
carry, and stores either a one or zero dependent upon the bit into
memory locations BUF through BUF--7. A later routine changes
these buffer locations into ASCII ones and zeros by inclusive ORing
the hexadecimal value 30 with each of the eight locations. The binary
contents of the location can then be printed out.

152

STRIP LDAA PRINT BYTE TO BE PRINTED

LDX BUF BUFFER START ADDRESS
LDAB #8 INDEX
LOOP DECB DECREMENT INDEX
BMI DONE GO IF DONE
CLR X CLEAR BUFFER BYTE
ASLA SHIFT OUT BIT
BCC NEXT BRANCH IF 0
INC X SET BUFFER BYTE TO 1
NEXT INX POINT TO NEXT BYTE

BRA LOOP GO FOR NEXT
DONE

BIT PROCESSING—6502

The methods of retrieving and storing fields within a memory
byte are similar to the 8080 and 6800 approaches.

GETFD LDA WORD WORD HOLDS FIELD

LSR A
LSR A
LSR A ALIGN FIELD

AND #7 MASK OUT FFF

STOFD LDA WORD WORD TO HOLD FIELD
AND #3$C7 MASK OUT FIELD
ASL FIELD
ASL FIELD
ASL FIELD ALIGN FIELD
ORA FIELD MERGE FIELD INTO WORD

The 6502 has no TST as in the 6800, but a test of any bit within
a memory byte may be made by the BIT instruction.

TEST LDA #MASK MASK HAS ONE IN TEST BIT

BIT WORD CONTAINS BIT TO BE TESTED
BEQ ZERO GO IF ZERO
ONE . BIT=1

For a further example of bit manipulation, let’s take the same
buffer as in the previous example, only this time we’ll be inputing
ASCII ones and zeros and changing them into 8 bits which are
stored in a byte in memory called BYTE. Assume that the eight
ASCII bytes are in BUF through BUF+7, that all have been checked

153

and found to be valid ASCII ones or zeros (hexadecimal 30 and
31), and that the first byte represents the msb of the byte to be
assembled.

ASSEM LDX #0 CLEAR INDEX
LDA #0
STA BYTE CLEAR RESULT
LOOP SEGC 1 TO CARRY FOR SUBTRACT

LDA BUFX LOAD ASCIl BYTE
SBC #%30 CONVERT TO ZERO OR ONE

CLC 0 TO CARRY FOR SHIFT
BEQ NEXT GO IF NOT ONE
SEC THIS IS ONE, SET C

NEXT ROL BYTE SHIFT 0 OR 1 AND PARTIAL
INX BUMP INDEX
CPX #8 COMPARE TO LAST INDEX+4-1

BNE LOOP NOT DONE
DONE

Here the decoded bits from the ASCII buffer are first converted to
a binary O or 1, and then shifted into location BYTE by a rotate
left shift. Eight shifts are required.

154

CHAPTER

22

Decimal and Floating-Point
Arithmetic

This chapter discusses two common ways of handling data in
microcomputers. The first, decimal arithmetic, is treated because all
of the microprocessors discussed here have a decimal arithmetic
capability in their instruction set. The second, floating-point repre-
sentation, is not implemented in the hardware, but is extremely im-
portant when a large range of numbers is to be represented in micro-
computers.

Decimal arithmetic was treated in earlier chapters in regard to how
the microcomputer accomplishes a decimal add or subtract. The “half-
carry” of the arithmetic and logical unit is used primarily for the
decimal arithmetic function. The half-carry is called the AC (auxiliary
carry) in the 8080 and the H flag (half-carry) in the 6800. The 6502
has no corresponding flag. Decimal arithmetic is performed in the
8080 and 6800 by executing a Decimal Adjust instruction after an
add or subtract. The microprocessor logic then properly adjusts the
sum or difference to a decimal, or bed, result. In the 6502 a decimal
flag (D) is set prior to the decimal operation. The following add or
subtract is then performed in decimal fashion. Operands taking part
in the decimal add or subtract must be bed operands as discussed in
Chapter 5.

A decimal operand has the format of HHHHLLLL,, where HHHH
is the high-order bed digit and LLLL is the low-order bed digit.
Valid bed digits are 0000, through 1001, representing the bed values
0 through 9. Each byte can therefore hold a bed value of 004, through
99:. Binary values such as 10111111, are meaningless in bed format

155

and will yield invalid results if used. This is an extension of the pro-
grammer’s basic axiom, “garbage in—garbage out” (gigo).

Since a range of O through 99, is not very usable, decimal repre-
sentation can involve long strings of bed data, which can be added
or subtracted in multiple-precision just as binary data can. The carry
of the most significant bit is used to implement the carry to higher-
order bed digits. In addition some limited multiplication and division
can be performed in software packages or hardware plug-in modules
that use bed format.

Why use bed or decimal arithmetic? For one thing, it is extremely
easy to convert from ASCII to bed format and back again. All that
is involved to convert to bed form is to take two ASCII digits repre-
senting O through 9, subtract octal 60 from each, resulting in two
bed digits of O through 9, and then pack the two bed digits into one
8-bit byte. To convert back to ASCII from bed, the two bed digits are
unpacked into two bytes and octal 60 is added to each. The following
example shows this packing and unpacking operation.

Converting From ASCII to BCD

ASCII data: 8 9
ASCII values: 00111000 00111001
Adjust: -00110000 —00110000
BCD: 00001000 00001001
Pack: 10001001
Converting From BCD to ASCII

) Unpack: 01010111

i Adjust: 00000101 00000111

ASCII values: +00110000 400110000

ASCII values: 00110101 00110111
ASCII data: 5 7

The second reason for using bed or decimal representation is that
mixed numbers containing integer and fractional parts, such as dol-
lars and cents, can easily be manipulated without having to worry
about scaling or keeping track of the decimal point. The whole prob-
lem of converting from a decimal point to a binary point, keeping
track of the point, and then reconverting to a decimal number is not
a trivial one. With bcd representation the decimal point is fixed in
one place, and as long as accounting-type functions are performed
decimal operations work quite well, at the expense of some inefficiency
in add and subtract times and memory storage.

Floating-point operations offer a means to automatically keep
track of the decimal point, extend the range of numbers that can
be represented, and permit addition, subtraction, multiplication, and

156

division of mixed numbers over a wide range without regard to scal-
ing or decimal point location. The analogous form of floating-point
representation in the real world is scientific notation. Scientific nota-
tion, as most of the readers are aware, represents numbers in the form
+ X. XX X 10*F, A mixed number which can be either positive or
negative (= X.XX) is multiplied by ten raised to a positive or nega-
tive power. Some examples of the use of scientific notation to repre-
sent large and small numbers are given below.

Number Number in Scientific Notation
—.00000123 —1.23 X 10-¢
+123777.6 +1.23777 x 10°
+1 +1 x 109
-1 -1 x 10Y

The rules for working with numbers expressed in scientific notation
are rather simple. To add or subtract two numbers in this form,
change the numbers so that their exponents are equal, and then add
or subtract the mixed number portion, retaining the same exponent.

Add +1.23 X 107 to —3.4 X 10—7
1) +1.23 x 10—3=+4123.0 X 10~

2) Add +123.0 X 10—7
—3.4 X107
3) Result = +119.6 X 10—7

To multiply or divide two numbers in scientific notation, the expo-
nents do not have to be equal; the mixed numbers are multiplied
or divided and the exponents are either added (multiplication) or
subtracted (division). When dividing, the exponent of the divisor is
subtracted from the exponent of the dividend.

Multiply +1.23 X 10-% by —1.1 X 10+7
1) Multiply mixed numbers +1.23
X —1.1

-1.353
2) Add exponents -5
+(+7)
+2

3) Result = —1.353 x 10+2

Divide —4.5 X 10+1° by —2.25 x 10+12
1) Divide mixed numbers —4.5/—2.25 = +2

157

2) Subtract divisor exponent from dividend
exponent
+10
—(+12)
-2
3) Result=+42 X 10-2

The software floating-point routines found in microcomputers
emulate the scientific operations above. An operand input in ASCII
format is first converted to a floating-point number similar to scien-
tific notation form. Two operands can be added with a floating-point
add routine, subtracted with a floating-point subtract routine, multi-
plied by a floating-point multiply routine, and divided by a floating-
point divide routine. When all floating-point arithmetic has been
accomplished a floating-point number can be reconverted to ASCII
format. A typical ASCII input or output format for floating-point
numbers is the form =X.XXXXE+YY where the mixed number is
+=X.XXXX and the exponent (power of ten) is *YY. Typically
about 7 decimal digits may be in the mixed number and the exponent
may be —99 to +99, allowing a great range of numbers to be ex-
pressed in this format. (It has been estimated that 10+% exceeds
by a factor of ten the number of different instructions in the next
generation of microprocessors, for example!)

Internal representation of the floating-point number consists of a
fractional part and an exponent. Although the format of the floating-
point number is not standardized from one microcomputer to the
next, a typical format might be as shown in Fig. 22-1. The floating-
point number is held in four bytes. The sign of the fractional part
is the msb of byte 0. The fraction is a binary fraction of the form
XXXXXXXXXXXXXXXXXXXXKXXXX,. The equivalent deci-
mal fraction would contain about seven decimal digits, as the num-
ber of bits required to hold one decimal digit is about 314. The
fraction is held in bytes 1, 2, and 3 in triple-precision format. The ex-
ponent is not base ten, but is base 16. In addition, the exponent is
in excess 64 form. An exponent value of 0000000, to 1111111, rep-
resents —64 through +63, respectively. The exponent value is changed
to excess 64 form by adding 1000000, to the true value. This facili-
tates binary adds and subtracts of bytes 0 and 1.

SIGN OF FRACTION
(EXCESS 64 EXPONENT

FRACTION

+SEEEEEEEFFFFFFFHFFFFFFFHEEFEFEEE
BYTE 0 | BYTE 1 | BYTE 2 [BYTE 3

158

In this format, the greatest number that can be represented is
+.FFFFFF6 X 1619, which is approximately 16+% or 10176, The
smallest number that can be represented is —.000001 X 1664, which
is identical with —1 X 16~7° or approximately —1 X 10—8%,

The floating-point add or subtract routines would operate in much
the same fashion as manual methods used with scientific notation.
The exponents of both operands would have to be equal for the add
or subtract to be done, so the fraction of the operand with the larger
exponent is shifted a hex digit at a time to the left while the exponent
is decremented by one until the two exponents match. It is possible
that one of the operands is out of the range of the other, and in this
case the operation would be meaningless. If the exponents can be
made equal, the add or subtract is performed in triple-precision on the
fractional part of the floating-point number, and the result retains
the adjusted exponent value. Multiplication and division routines
simply add or subtract the exponents and multiply or divide the frac-
tional parts in triple-precision.

The above discussion is a very broad coverage on floating-point
representation. The reader is advised to look in other reference ma-
terial or listings that provide further information or listings of com-
plete floating-point routines.

DECIMAL ARITHMETIC—8080

The following routine illustrates the conversion of two four-digit
ASCII operands to two two-byte bed operands and the decimal addi-
tion of the two. The first operand in ASCII is in location BUF1
through BUF1+3 and the second is in locations BUF2 through
BUF2+3. The comments field shows the contents of the A register
before and after the DAA instruction.

DCADD LXI H,BUF1 POINT TO FIRST OPERAND
CALL PACK PACK INTO BUF1, BUF1+41
LXi H,BUF2 POINT TO SECOND OPERAND
CALL PACK PACK INTO BUF2, BUF2+1
LX1 H,BUF2+1 POINT TO 2ND OPERAND LS
LDA BUF141 GET TWO LS BCD DIGITS
ADD M ADD OPERANDS
DCX H POINT TO 2ND OPERANDS MS
DAA DECIMAL ADJUST
STA RES4-1 SAVE RESULT LS
LDA BUF1 GET TWO MS BCD DIGITS
ADC M ADD OPERANDS
DAA DECIMAL ADJUST
STA RES SAVE RESULT MS

159

PACK MOV AM GET MS DIGIT

sul 060 CONVERT TO BCD
CALL ROT SHIFT LEFT 4
MOV MA SAVE
INX H BUMP POINTER
MOV AM GET 2ND DIGIT
Sul 060 CONVERT TO BCD
MOV M,A SAVE
INX H BUMP POINTER
MOV AM GET 3RD DIGIT
Sul 060 CONVERT TO BCD
CALL ROT SHIFT LEFT 4
MOV MA SAVE
INX H BUMP POINTER
MOV AM GET 4TH DIGIT
Sul 060 CONVERT TO BCD
MOV M,A SAVE
CALL MERGE MERGE BCD DIGITS
RET RETURN

MERGE MOV AM 4TH DIGIT
DCX H POINT TO 3RD
ORA M NOW 3RD AND 4TH BCD
MOV BA SAVE
DCX H POINT TO 2ND
MOV AM GET 2ND
DCX H POINT TO 1ST
ORA M NOW 1ST AND 2ND BCD
MOV M,A STORE RESULT IN BUFX
INX H POINT TO BUFX+-1
MOV M,B STORE RESULT IN BUFX+1
RET

ROT RLC ROTATE (A) LEFT 4 BITS
RLC
RLC
RLC
RET RETURN

There are several subroutines used. ROT rotates the contents of the A
register 4 bits left. MERGE merges the four bed digits in four bytes of
the buffer into the first two bytes of the buffer. Before MERGE is
called, the four bed digits are aligned as follows:

BUFX+0 DDDDO0000 FIRST BCD DIGIT
+1 0000DDDD SECOND BCD DIGIT
+2 DDDDO0000 THIRD BCD DIGIT
-+3 0000DDDD FOURTH BCD DIGIT

160

PACK converts each ASCII digit in BUFX through BUFX+3 to
bed values aligned as shown above for MERGE to use. PACK calls
both MERGE and ROT. The main routine DCADD adds the two
Is bed digits in BUF2+1 to the two Is bed digits in BUF1+1 and,
after the decimal adjust, puts the result in RES+1. It then adds
the two ms bed digits in BUF2 with the two ms digits in BUF1 with
carry, does a decimal adjust, and puts the result in RES. The code
could have been shortened considerably, but this will give the reader
an idea of not only the DAA operation, but the conversion and un-
packing operations as well.

DECIMAL ARITHMETIC—6800

The opposite operation from the above example, unpacking and
converting a bed result, is shown for the 6800. Here the bed operands
are two bytes in length (4 bed digits) each and are located in
OPER1,0PER1+1 and OPER2,0PER2+1. The result of the decimal
add is to go into BUF through BUF+3 in ASCII form, ms digit of
the result first,

DCADD LDAA OPER141 FIRST OP LS
ADDA OPER2-+-1 SECOND OP LS

DAA DECIMAL ADJUST A
STA BUF+-2 SAVE RESULT
LDAA OPER1 FIRST OP MS
ADCA OPER2 SECOND OP MS (W/C)
DAA DECIMAL ADJUST A
TAB SAVE RESULT
LSRB

LSRB

LSRB :

LSRB ALIGN FIRST DIGIT
ANDA #3F GET BCD DIGIT
ANDB #$F GET BCD DIGIT
ADDA # @60 CONVERT TO ASCII
ADDB # @60 CONVERT TO ASCII
STAB BUF STORE FIRST DIGIT
STAA BUF-+1 STORE 2ND DIGIT
LDA BUF-+-2 RESTORE LS RESULT
TAB FOR SHIFT

LSRB

LSRB

LSRB

LSRB ALIGN THIRD DIGIT
ANDA #$F GET BCD DIGIT
ANDB #$F GET BCD DIGIT
ADDA # @60 CONVERT TO ASCII
ADDB # @60 CONVERT TO ASCII

161

STAB BUF+-2 STORE THIRD DIGIT
STAA BUF+4-3 STORE FOURTH DIGIT

Here no subroutines were used. The decimal adjust was done after
each add, and the second add was an add with carry to pick up any
carry from the lower-order bcl digit position. Each group of two
digits of the result was then loaded into the A and B accumulators,
properly shifted to a right justified position, ANDed to mask out any
garbage, converted to an ASCII digit by the addition of octal 60, and
stored in the buffer in preparation for printout.

DECIMAL ARITHMETIC—6502

The 6502 differs from both the 6800 and 8080 in that it has a
decimal flag that can be set or reset by the SED and CLD instructions.
If the decimal flag is set, then the 6502 will always perform decimal
addition or subtraction. This means that if a long series of decimal
adds or subtracts is to be performed there will not have to be an
explicit decimal adjust after each operation. Decimal mode continues
as long as the decimal flag is set. When reset, the arithmetic and
logic unit performs binary addition and subtraction.

The code to perform decimal addition on two four-digit bcd
operands is shown below. The operands are in OPER1,0PERI1-+1
and OPER2,0PER2+1 and the result goes to RES and RES+1.

DCADD SED SET DECIMAL MODE

LDA OPER1-+1 LS OPERAND 1

CLC CLEAR CARRY

ADC OPER24-1 LS OPERAND 2

STA RES+-1 LS RESULT

LDA OPER1 MS OPERAND 1

ADC OPER2 MS RESULT

STA RES MS RESULT

CLD CLEAR DECIMAL MODE

The code to perform bed subtraction is similar, but the carry flag
must be set before the first (least significant) subtract takes place.
Here the operands are named identically to the above example. On
further subtractions the borrow is propagated from the lower-order
subtractions automatically.

DCSUB SED DECIMAL MODE
LDA OPER1+1 LS OPERAND 1
SEC SET CARRY

162

SBC
STA
LDA
SBC
STA
CLD

OPER2-++1
RES 41
OPER1
OPER2
RES

SUBTRACT LS OP 2
SAVE RESULT

MS OPERAND 1

MS OPERAND 2

MS RESULT

CLEAR DECIMAL MODE

163

CHAPTER

23

I /O Operations

This chapter will concern itself not so much with the I/0O devices
used on microcomputers themselves, or their controllers, but the
approach used in software to communicate with various types of 1/0
devices. One of the reasons for avoiding detailed descriptions of the
I/0O device controllers is that, just like the case of the Enterprise’s
battle computers, there is not a great deal of standardization among
the devices. We will therefore separate the device and device con-
troller from the rest of the system by discussing the software I1/0
driver and other software that communicates with the I1/0 driver.
In addition, interrupt processing and reentrancy methods will be
discussed.

Chapter 10 discussed I/O via cpu registers a byte at a time and
I/0 via the DMA (Direct Memory Access). The first method is
called programmed I/0O and the second DMA 1/0. The less com-
plex I/0O and lower-speed 1/O devices would generally use pro-
grammed I/0, while the high-speed I/0 devices would use a combi-
nation of programmed I/0 and DMA. In the latter case programmed
1/0 is used to pass arguments for control and receive status relating
to the actual transfer of data, which is done via DMA. Regardless
of the device, the basic software routine for communication with the
device and device controller is called the software driver. It is essen-
tially a subroutine that contains the necessary code to handle all
communication with the particular I/O device, which is effectively
all programmed I/O, since the DMA operates in a transparent
manner to the program.

The more complex the I/O device the more complex the 1I/0
driver and the greater the reason for having just one set of code to

164

handle all communication with the device, rather than duplicating
code each time the device is used in the program. In the simplest case,
a Teletype or Teletype-like device like a TV Typewriter, the primary
function that the Teletype I/O driver performs is to check the ready
flag in the I/O controller to determine if there is a character waiting
to be input or to determine if the last output character has been
completely sent to the device. The code for these functions would
be similar to the following, written in 6502 assembly language.

* TTY OUTPUT ROUTINE

TTYOT LDA TTY LOAD TTY STATUS
AND MASK GET READY STATUS BIT
BEQ TTYOUT LOOP IF NOT READY
TYA
STA TTYA OUTPUT CHARACTER
RTS RETURN

* TTY INPUT ROUTINE

TTYIN LDA TTY LOAD TTY STATUS
AND MASK1 GET STATUS BIT
BEQ TTYIN LOOP IF NO INPUT
LDA TTYA
RTS RETURN

In the output routine, the ASCII character to be output is in the Y
index register. A check is first made of the ready status of the TTY
controller by reading the status by the LDA instruction. The LDA
uses the I/O address of the TTY controller that returns status infor-
mation. If the status bit is not set, as, for example, it would not be
if the previous character was still being output (remember it may
take tens of thousands of instruction times to finish I/0O on one char-
acter), the routine loops back to TTYOT. When the TTY is ready
the status bit is set, the TYA transfers the ASCII character in the Y
register to the accumulator, and an output is done by the STA instruc-
.tion, which uses another address for the TTY to effect the transfer
of the character. The TTY input routine is similar, except that it
uses a different mask to check the input status bit, and, of course,
does an input by an LDA.

The driver shown above is a “wait-for-complete” type of I/O
driver, as the code loops on the status check until the device con-
troller becomes ready, at which point the next character is read
in or sent out. An alternative approach, as previously discussed,
would be an inferrupt-driven output routine in which the ready
status would initiate an interrupt. The interrupt processing routine
would then process the next character until the last character in the
buffer was handled. Although TTY routines are usually not interrupt
driven, there is no reason why they shouldn’t be, and the following
example gives the general approach. Suppose that a message of thirty

165

or forty ASCII characters is to be output to a TTY. The message
is a periodic report on the status of the system and is output every
10 seconds while normal processing continues. If the system is moni-
toring real-time data and cannot be shut down to loop in the I/O
routine for the three or four seconds it takes to output the message,
then an interrupt-driven I/O could well be used. In this case, the
first character would be output by the I/0 routine in the same fashion
as above. The interrupts would then be armed in the TTY controller
(this is a command which tells the controller that the pending 1/O
will be on an interrupt basis), the interrupt flag in the cpu will be
set by the “set interrupt flag” instruction, and the I/O driver would
then return to the calling program. The program that called the 1/0
driver would then continue processing real-time data. When the
character was completely transmitted to the TTY, the ready status
would cause an external interrupt to the cpu. If the interrupts were
enabled at that point the automatic transfer to the interrupt routine
for the TTY would be entered. If the interrupts were not enabled in
the cpu precisely at that time, the interrupt would occur when the
interrupt flag in the cpu was again set. It is perfectly permissible to
enable and disable interrupts by turning the cpu interrupt flag off
and on at various times. Any pending interrupt will be remembered
and will cause an interrupt when the flag is again set.

When the interrupt routine is entered, the environment is saved
as previously described. All volatile cpu registers and flags are either
pushed into the stack automatically or under program control, de-
pendent upon the microprocessor. The interrupt routine then picks
up the next character from the message buffer, and, if it is not a
terminating character, outputs the character to the TTY, arms the
TTY interrupt, enables the system interrupts, and returns to the
interrupted point after restoring the environment. Identical interrupt
processing occurs for each of the characters to be output. When the
last character has been output, detected by either a special terminat-
ing character at the end of the message string, or by decrementing
a count to zero, the TTY interrupt routine sets a software flag indi-
cating that I/O has been completed for the message and does not
initiate any new I/O. At some point, perhaps when the next system
message is to be output, the main program checks this flag to deter-
mine that the last message was properly output, resets the flag, and
starts the next message by calling the interrupt-driven TTY I/0O
driver.

The interrupt-driven 1/O utilized an I/O buffer to hold a string
of ASCII characters to be output. I/O buffers are commonly used
for every type of 1/0, and are a necessity for DMA transfers where
data to be transferred must be blocked in one contiguous set of
memory locations for the automatic transfer. A convenient-sized

166

buffer for a Teletype would be the maximum length of one Teletype
line, or 72 bytes. Buffers for tv displays are commonly 32 or 64 char-
acters long for ASCII oriented displays and a thousand or more bytes
long for graphics type displays. In the latter case the buffer in mem-
ory represents the entire matrix of points or characters that will be
displayed on the screen. In the case of an audio cassette interface,
the buffer may be variable-length as the number of bytes written to
the tape does not have to be a specific length which is related to the
physical characteristics of the I/O device. Buffers for floppy disc, on
the other hand, are conveniently made the same length as the sector
on the floppy disc. All writes and reads will be the same number of
characters, at least on a sector basis; this is an example of a fixed-
length buffer.

How many buffers are required? As many as it takes to perform
the I/0. Predefined messages are assembled in a message area and
in effect are their own buffers. The location of each message is passed
to the I/O driver for output either in a wait-for-complete or inter-
rupt driven operation. The assembler generates the necessary ASCII
characters automatically. An example of a set of messages for the
6800 are shown below.

MSG1 FCC /QUICKLY/
MSG2 FCC /WATSON/
MSG3 FCC /THE GAME’S/
MSG4 FCC /AFOOT!/

Strings of characters which are constructed dynamically, such as an
assembler listing output, must be put into one or more buffer areas.
Typically there might be one buffer for listing output, one for source
line input, and one for assembler object output. The numbers of
these are not too important, as the buffer lengths involved are small.
When large buffers are required, however, as in the case of video
graphics, cassette tape records, and floppy disc records, only one
or two should be used at a time to save memory. An example of an
advantageous use of two buffers would be a double-buffering type
of I/0. Double buffering would be used to speed up the I/O by
allowing a DMA or interrupt-driven 1/0 to proceed from one buffer
while the program is processing data and filling in the other buffer.
When the 1/0 is complete for the first buffer, the 1/O for the second
buffer is started, and the program now processes data into the first
buffer. In this way processing and I/O can be overlapped. This type
of buffering is sometimes called ping-pong buffering for obvious
reasons.

A slightly more elaborate 1/O driver for Teletype 1/0 would re-
quire an address defining the start of the I/O buffer, and possibly a
flag defining whether the operation was to be wait-for-complete

167

or interrupt driven. The I/O buffer would contain a terminating
character such as a null (zero) or might contain the number of char-
acters to be output as the first byte of the I/O buffer. The 8080
call to such a driver would appear as shown below.

LXi B,MSG1 POINT TO MESSAGE
XRA A ZERO A FOR WAIT FLAG
CALL TTYOT OUTPUT MESSAGE

. CONTINUE PROCESSING

As might be expected, there is a kind of creeping elegance that
one notices as one thinks of more and more functions that an I/O
driver could perform. Some of these are very much related to the
I/O device and are required functions for operation of the I/O
device. An audio cassette interface, for example, might provide a fast
forward, fast reverse, read a record, and write a record function in
addition to supplying status information about the device. These
functions could be implemented in the I/O driver by passing the
proper parameters from the calling program to the driver. In the
cassette example, for instance, a block of I/O parameters might be
passed to the cassette I/O driver by specifying the address of the
parameter block. A typical example of the parameters would be:

IOPAR+0 Function: 0 = read, 1 = write, 2 = FF, 3 = reverse
IOPAR+1 Address of buffer for reads, writes

IOPAR+2 Interrupt flag: O = interrupt, 1 = wait

IOPAR+3 Status: holds status at end of operation

Naturally, the more complicated the 1/O device, the more commands
and status information that has to be passed, and probably the more
complicated the I/O driver and number of parameters that must be
passed. However, why limit the I/O driver to physical functions only?
It might be nice to be able to find the nth record on the audio cassette
tape, for example, or to skip n records, or to keep a directory of
records on cassette. This is the creeping elegance effect and it is not
necessarily a bad thing. In general, though, the reader is advised to
implement logical I/O functions in the I/O driver with enough
generality to enable the program to easily perform I/0 on the device.
Other, more elegant functions can be accomplished by file manage
programs Or monitor programs.

I/0 OPERATIONS—8080

The 8080 IN and OUT instructions have been previously discussed
in Chapter 10. They offer up to 256 unique I/O addresses without
encroaching upon memory addresses. All programmed I/O is done

168

using the IN and OUT. A sample Teletype I/O driver is shown as
follows. Note that the I/O driver automatically supplies a carriage
return, line feed by a call to the CRLF routine and that the output
of the character string automatically terminates when a null (zero)
is detected.

CALL CRLF NEW LINE
LXI H,MSG1 OUTPUT TITLE
CALL TTYOT

CRLF LXI H,CRBUF POINT TO CRLF CHARACTERS

CALL TTYOT OUTPUT CRLF
RET
TTYOT MOV BM GET CHARACTER
RZ RETURN IF NULL
TTYO1 IN TTYS GET STATUS
ANI 2 CHECK READY
JZ TTYO1 LOOP TILL READY
MOV AB CHARACTER
OUT TTYD OUTPUT CHARACTER
INX H BUMP CHARACTER POINTER
JMP TTYOT GO FOR NEW CHARACTER

Teletype input is similarly handled. Termination on input may be on
a terminate character, such as a carriage return or line feed, or could
be after a specified number of characters, or either.

As the 8080 hardware implements an interrupt by jamming a RST
instruction onto the data bus at a particular time, only the current
contents of the program counter are saved at interrupt time. The
remaining environment must be saved if any cpu flags or registers
are to be used in the interrupt processing routine. The following
code illustrates saving and restoring the environment in a typical
interrupt processing routine. The interrupt is for vectored interrupt
number one which causes a RST to location 8. Since eight locations
are not sufficient to process the interrupt, the instruction in location
8 is a jump to the main body of the interrupt routine.

LOC 8 JMP TTYIN JUMP TO INT HANDLER
LOC N TTYIN Di PREVENT FURTHER INT
PUSH PSW SAVE A AND FLAGS
PUSH B SAVE B,C
PUSH D SAVE D,E
PUSH H SAVE H,L

169

POP

H RESTORE H,L
POP D RESTORE D,E
POP B RESTORE B,C
POP PSW RESTORE A, FLAGS
El ENABLE INTERRUPTS
RET RETURN

Note that the first instruction disables further interrupts. This is op-
tional if the system is set up to handle more than one interrupt
simultaneously and there are no reentrancy problems. All cpu regis-
ters and the cpu flags are saved at the beginning of the interrupt
processing routine and restored at the end before enabling interrupts
and returning to the interrupted location. If some of the registers
were not used in the interrupt routine, then there would be no need
to save them except that one tends to forget that fact in subsequent
modification of the program.

1/0 OPERATIONS—6800

A TTY input routine that terminates either on a carriage return
or after 8 characters is given below. As each character is input it is
stored in the buffer area defined by the contents of the stack pointer.
Since the buffer area is only 8 bytes long some protection must be
provided to stop user input after 8 characters. Typically a routine
such as this might be used to input commands to a system monitor.

LDX #BUFIN ADDRESS OF INPUT BUFFER
JSR COMIN GO TO INPUT DRIVER
PROCESS COMMAND

COMIN LDAB #38 SETUP INDEX COUNT
LOOP LDAA TTYS GET TTY STATUS
ANDA #4 TEST INPUT STATUS
BEQ LOOP LOOP TILL DONE
LDAA TTYD GET CHARACTER
CMPA #CR TEST FOR CR
BEQ RET RETURN IF CR
STAA X STORE CHARACTER
INX BUMP BUFFER POINTER
DECB DECREMENT COUNT
BNE LOOP GO FOR NEXT IF NOT DONE
RET RTS RETURN FROM SUBROUTINE

170

Interrupt handling is made considerably less tedious in the 6800
as all of the registers and flags are saved automatically when the
interrupt occurs. No special actions are necessary in the interrupt
routine to save the environment. The RTI, Return From Interrupt,
instruction automatically restores the environment at the completion
of interrupt processing.

Many of the microcomputers using the 6800 have an inherent
monitor program in PROM. In some cases this is the Motorola
MIKBUG program and in others it is the manufacturer’s own moni-
tor/debug package. Both types should offer Teletype and possibly
other I/0O driver programs that could be used to advantage by the
programmer.

170 OPERATIONS—6502

A routine to space n lines or n character positions on a Teletype
is provided for the 6502 below. This type of routine could possibly
be used for plotting data on a Teletype or alphanumeric display as
coordinates of points given in x,y were converted to corresponding
line positions and character positions. Entry is made to the routine
with the accumulator holding the function; 0 is the function for line
space, and 1 is the function for character position space. The x regis-
ter holds the number of lines or character positions to space.

MAINP LDA #0 SETUP FOR LINE SPACE

LDX #20 SPACE 20 LINES
JSR SPACE GO TO SPACE LINES

SPACE LDY #LF LOAD LF CHARACTER

CMP #0 COMPARE FUNCTION
BEQ LOP1 GO IF LINE SPACE
LDY #BL LOAD BLANK CHARACTER
LOP1 DEX DECREMENT NUMBER
BMI GO IF DONE
LOOP LDA TTYS LOAD STATUS
AND #2 TEST FOR READY
BEQ LOOP LOOP TILL READY
TYA TRANSFER CHARACTER
STA TTYD OUTPUT CHARACTER
JMP LOP1 GO FOR NEXT

When an interrupt occurs in the 6502, the address of the inter-
rupted instruction (the contents of the PC) and the processor flags
are automatically pushed into the stack. If the interrupt handling

171

routine is to use any of the remaining cpu registers they must first
be saved in the stack and then restored after the interrupt processing
is over. The sequence for this is shown below. The contents of the

other registers must first

INTHN PHA
TXA
PHA
TYA
PHA

PLA
TAY
PLA
TAX
PLA
RTI

SAVE A
GET X
SAVE X
GET Y
SAVE Y

GET Y

RESTORE Y

GET X

RESTORE X

RESTORE A

RETURN FROM INTERRUPT

be transferred to the accumulator to enable a push to the stack in
saving the registers and a similar transfer must be used in restoring
the registers. The RTI pulls the processor flags and program counter

from the stack automatically.

172

CHAPTER

24

Putting It All Together

The chapters before this described commonly used assembly lan-
guage programming techniques for the 8080, 6800, and 6502 micro-
computers. By now the reader should have a fairly thorough under-
standing of how to perform basic programming operations. The only
thing remaining is to take the basic techniques and to build upon
them to implement a program or subroutine to perform broader
functions. This chapter will attempt to explain how to do this, with
the example of a line editor. A line editor, sometimes called a text
editor, is a program that enables a user to create or modify assembly-
language source files. A file is composed of records and records are
composed, in this case, of character data. We’ll specifically assume
that the line editor to be implemented works with assembly-language
source files made up of records of assembly language source lines.
The lines may be one to 64 characters in length and are terminated
by a carriage return. A file is composed of from one to any number
of records and basically contains a set of records representing a com-
plete program. The line editor will create a new source file on paper
tape or cassette tape or will modify an old program on paper tape
or cassette and produce a new version on either medium.

The line editor will receive commands that indicate the editing
to be done from Teletype or TV Typewriter. The following are the
valid commands:

1. +N,N Delete line number N of the old file. Do not output to
the new file.

2. +N,M Delete line numbers N through M of the old file. Do
not output to the new file.

3. +N Output the current line of the old file through line N
of the old file to the new file.

173

4. +N Output the current line of the old file through line N
of the old file to the new file. Then output new lines
1,2,..., N to the new file.
LINE 1
LINE 2

LINEN
5. +E End the edit by outputing the current line of the old
file through the last line of the old file to the new file.

In addition to the edit commands above, the line editor initially
inputs a command string that defines the old file device, the new file
device, and the command device as follows:

/EDIT,O,N,C

Possible mnemonics for O are TTY or CAS. Possible mnemonics
for N are TTY or CAS. Possible mnemonics for C are TTY or TVT.
To edit from TTY paper tape to cassette using the TVT for edit
commands, the user would type /EDIT, TTY,CAS, TVT followed by
a carriage return. To delete lines 3 through 53 and to insert three new
lines after line 67 of the old file, the commands would be:

+3,53

+67

(New line number 1)
(New line number 2)
(New line number 3)
+E

By defining the above specification for the line editor, we’ve already
done one of the most important steps in producing any new set of
programs—we’ve determined that our computer system can actually
perform the task, and we’ve drawn up a workable set of guidelines
on how the program is to function. There are many commercial pro-
grams that never reach this phase until 90 percent of the way
through the project, if at all. In this case the problem of determining
whether the system could do the task was trivial. There are no severe
time constraints in executing the program and we’ll assume that all
equipment and interfaces function properly in addition to having a
reasonable amount of memory, say 2K bytes. The specification of
line editor commands was a bit more difficult. By gleaning the latest
copies of some of the computer magazines and by looking at other
reference material we decided that the above functions could be
quite reasonably implemented. If they were not as exotic as some
of the software packages currently offered, we know as least that
our documentation will be superb and it will be easy to add to the
program later to expand its capabilities (won’t it?).

174

Having the basic functions firmly fixed, we can now go to the
next step in implementing the program, determining what routines
will be required. Some of these routines already exist, for we have
kept a large library of routines in source language form on paper
tape, along with listings describing each routine. Others we will have
to create from scratch. Having in mind future projects, we’d best
create routines that are general purpose in nature so that they can
be used in other programs. Some of the code, of course, will be
unique to the line editor and will never be able to be reused, but
we’ll try to write code in the generic form whenever possible. Now
let's see what we’ll need. We’ll obviously need a Teletype 1/O
driver. Hmmm, we have one in the library that reads a line of char-
acters terminated by a carriage return or 64 characters, and writes
a line of n characters. In our system the paper tape reader is me-
chanically linked to the keyboard, so that will take care of reading
or punching paper tape as well. Another routine that will be re-
quired is a cassette I/O driver. We’ll have to write that one, having
just acquired a 187 byte per second beauty. The TV Typewriter 1/0
driver also exists.

Now let’s see. A routine for converting ASCII line numbers to
binary is required. Possible other routines would be a routine to scan
a line of arguments delimited by commas to find the two arguments
in the line and a routine to search for the nth record. We may not
add the search routine or the argument subroutines at this point,
however. They can be done at a later date when we get more ex-
perience in string manipulation techniques. The current subroutines
we now need for the program are:

1. TTY 1/0 Driver

2. Cassette 1/0O Driver

3. TV Typewriter 1/0 Driver

4. ASCII decimal to binary conversion routine.

Now that the basic routines required have been determined, let’s
rough out a general flow of the program. Flowcharts aren’t really
required at this point unless one works better by describing things
in that fashion. The actions which are listed below are roughly the
things that happen:

1. Program starts. Variables initialized, things generally reset.

2. Title printed on TTY. Request made for /EDIT command.

3. READ in /EDIT command. If in error, repeat; otherwise store
old file type, new file type, and command device.

4. Read in edit command from command device using command
device driver. If proper sequence, syntax continues; otherwise
output error message and go to 4.

175

5. Strip arguments from command.

a. If +N type, output current line from old file through N to
new file, reading one line at a time from the old file device.

b. If +N,M type, read in old lines n through m from old file
device a line at a time. Do not output to the new file device.

c. If +N,N type do the same as step Sb.

d. If the first character is not a PLUS output this line to new
file device as a new line.

e. If +E, read in current old lines through end of old file, one
line at a time. As each is read, output to new file device.
Then go to step 1.

Implicit in these steps are things like checking line numbers to see
that they have not already gone by, error message printout, checks on
the validity of data from the various I/O devices, and the like.

Now that the rough sequence of steps has been listed a more
formal flowchart can be drawn up using a flowcharting template, your
own flowcharting symbols, or a series of steps in finer detail. The
only consideration for doing things in standardized fashion is that
occasionally you may want other programmers to work from your
flow diagram, and they may experience some trouble if they are
not in standard fashion. Included in the charts will be a reference
to three buffer areas, the old line buffer, 64 characters long, the new
line buffer, 64 characters long, and the command buffer, 64 charac-
ters long or less. Once the flow diagrams have been done, it’s
probably best to sit back and say, “Have I covered every possibility?”
and, like the worried mother, “Where did I go wrong?” It will save
a lot of time later.

Once the reader has checked and rechecked the fiow diagrams,
coding can begin. For those readers without assemblers, the sequence
is almost identical with those with. assemblers. In each case the sym-
bolic source lines are printed with comments. Leave spaces between
each line for additions, the more spaces the better. Locations are
assigned symbolic names in both cases. The use of comments can-
not be too strongly urged. Except when it is completely clear what
the instruction is doing, each source line should have a comment
describing the code. In addition, code should be blocked off by com-
ment lines to make separate routines of code recognizable. An ex-
ample would be:

L R R R R e R R R]

* ASCIl TO DECIMAL *
* CONVERSION *
AR AR SRR R SRR R R EEEREE SRR RS REEEEEER RS REREEEER]
* THIS ROUTINE CONVERTS UP TO 6 ASCII DIGITS
* INTO A 16-BIT BINARY VALUES. ENTER WITH

176

After the code has been checked and rechecked (desk checked),
the assembler-less programmers can hand assemble, while the pro-
grammers with assemblers can let the assembler perform the work.
In either case there will probably be errors, necessitating reassembly
by hand or machine. When you are certain the program code is
perfect, then it is time to start debugging.

Unfortunately, in most cases the program will not run perfectly
the first time. In fact, if it is large, it probably won’t run perfectly the
tenth time. When debugging, it is sometimes helpful to debug a
small section of the code at a time. Try parameters that reflect a
typical value and then values that are the extremes. For example, in
a table look-up, try a value that turns out to be at the middle of the
table, followed by values at the extreme top and bottom of the table.
The entire debugging process will be greatly speeded up by the time
spent in desk checking. When errors are found in the code, it may
be better to avoid reassembling and simply patch the code, changing
the instruction to the proper op code and/or address by overwriting
the first version. Sometimes this may mean jumping out to a patch
area where additional code may be inserted, and then jumping back
to the instruction following the patched jump, analogous to jumping
out to a subroutine. It is often convenient to leave NOPs at appro-
priate points in the program that can be patched with code if
necessary.

Once the program has been debugged and various test cases tried
and the programmer is fairly certain it works, then a final version of
the source code can be produced and saved on paper tape, cassette,
or handwritten copies, along with the specifications on the use of the
program. In many cases this will not be the final version, as is the
case with most software “released” by manufacturers. There always
seems to be one combination of things that has not been encountered.
Typically this bug results in destroying the program when one is run-
ning at two a.m. with no back-up system. The bugs, however, will
diminish with each version of the program.

While the above is a very brief sketch of the process of designing,
writing, and debugging a program, it is hoped that the reader will
expand upon it by going over existing programs from manufacturer’s
listings, manufacturer’s documentation, programs printed in computer
magazines, and other programming reference books. It is difficult to
define a programming style and probably the best way to acquire
it is by emulation of the techniques used by other programmers.
Some programs just look good with many comments, modularity of
routines, proper placement of the main body of the code, subroutines
and buffers, and code that is easy to follow. It is possible to produce
programs similar to this and yet still have a great deal of fun while
implementing assembly-language code.

177

PART

4

Programming
Algorithms

CHAPTER

25

Programming Algorithms

This chapter provides commonly used subroutines for microcom-
puters based on the 8080, 6800, and 6502. Each routine is described
in six paragraphs. The name of the routine is usually related to the
function it performs. FILLD is FILL Data, for example. The func-
tion of the routine is briefly described in the next paragraph. The third
paragraph describes the calling sequence of the subroutine. It specifies
where the arguments for the subroutine are stored, and where results
of the subroutine are to be found. When memory locations rather than
cpu registers are used to hold input arguments and output results, the
memory locations are usually specified as page O locations for the
6800 and 6502. The next paragraph describes which registers are
destroyed in the operation of the subroutine. In some cases no regis-
ters are used and the subroutine may be called with the contents of
all registers returned intact. In other cases some or all registers are
utilized by the subroutine and must be saved in the stack before the
subroutine is called if the register contents must be preserved.

The last section of each subroutine is a complete program listing of
the subroutine. A complete set of symbolic assembly language code is
listed under the Label, Operand, Arguments, and Comments columns.
Standard microprocessor manufacturer’s mnemonics are used for op-
erands and arguments. Labels are limited to five characters. The Loc
column specifies the memory locations that the subroutine is to oc-
cupy. 8080 subroutines start at location 000, 6800 subroutines start
at location 10044, and 6502 subroutines start at location 200,¢. The
Contents column shows the equivalent machine language code for the
subroutine assembled for those memory locations. Relocating the sub-
routine to another portion of memory should be straightforward. When
page 0 locations are referenced, they are designated by a two-character

180

value in the machine code, such as XX, YY, ZZ, or WW. In some
cases a subroutine will call another subroutine. In these cases the
address of the called subroutine is represented by XX XX with an
asterisk indicating that the actual address must be filled in by the
user. When relocating the code for these subroutines, pay particular
attention to properly changing addresses. Many instructions will re-
main unchanged, but those instructions that specify a direct memory
address must be changed to reflect the new location of the subrou-
tine. 8080 direct addresses are in the instruction least significant byte
of the address first, followed by the high-order byte, as are 6502 ad-
dresses. 6800 addresses have the most significant byte of the address
first, followed by the least significant byte. In general, a one-byte or
two-byte instruction will not have to be altered if the program is
moved, while a three-byte instruction will require a recomputation of
the address. In general, all double-precision variables are in memory
with the most significant byte followed by the least significant byte.

It is hoped that these subroutines will provide a convenient way to
implement commonly used functions in the reader’s microcomputer
and also offer a comparison of the implementation of the functions
on the three types of microprocessors.

SUBROUTINES

SCOMP Simple Compare for 8080

SHIFT Shift Subroutine for 8080

SHIFT Shift Subroutine for 6300

SHIFT Shift Subroutine for 6502

TIME Timing Loop for 8080

TIME Timing Loop for 6800

TIME Timing Loop for 6502

UNSPM Unsigned Single-Precision Multiply for §080
UNSPM Unsigned Single-Precision Multiply for 6800
UNSPM Unsigned Single-Precision Multiply for 6502
UNSPD Unsigned Single-Precision Divide for 8080
UNSPD Unsigned Single-Precision Divide for 6800
UNSPD Unsigned Single-Precision Divide for 6502
MPADD Multiple-Precision Add for 8080

MPADD Multiple-Precision Add for 6800

MPADD Multiple-Precision Add for 6502

MPSUB Multiple-Precision Subtract for 8080
MPSUB Multiple-Precision Subtract for 6800
MPSUB Multiple-Precision Subtract for 6502
ASBXB ASCII Binary to Binary Subroutine for 8080
ASBXB ASCII Binary to Binary Subroutine for 6800
ASBXB ASCII Binary to Binary Subroutine for 6502

181

ASDXB
ASDXB
ASDXB
ASHXB
ASHXB
ASHXB
ASOXB
BXASB
BXASB
BXASB
BXASD
BXASD
BXASD
BXASO
BXASH
BXASH
BXASH
MVDAT
MVDAT
MVDAT
FILLD
FILLD
FILLD
COMST
COMST
COMST
SRTAB
SRTAB
SRTAB
RANDM
RANDM
RANDM

182

ASCII Decimal to Binary Subroutine for 8080
ASCII Decimal to Binary Subroutine for 6800
ASCII Decimal to Binary Subroutine for 6502
ASCII Hexadecimal to Binary Subroutine for 8080
ASCII Hexadecimal to Binary Subroutine for 6800
ASCII Hexadecimal to Binary Subroutine for 6502
ASCII Octal to Binary Subroutine for 8080

Binary to ASCII Binary Subroutine for 8080
Binary to ASCII Binary Subroutine for 6800
Binary to ASCII Binary Subroutine for 6502
Binary to ASCII Decimal Subroutine for 8080
Binary to ASCII Decimal Subroutine for 6800
Binary to ASCII Decimal Subroutine for 6502
Binary to ASCII Octal Subroutine for 8080

Binary to ASCII Hexadecimal Subroutine for 8080
Binary to ASCII Hexadecimal Subroutine for 6800
Binary to ASCII Hexadecimal Subroutine for 6502
Move Data Subroutine for 8080

Move Data Subroutine for 6800

Move Data Subroutine for 6502

Fill Data Subroutine for 8080

Fill Data Subroutine for 6800

Fill Data Subroutine for 6502

Compare String Subroutine for 8080

Compare String Subroutine for 6800

Compare String Subroutine for 6502

Search Table Subroutine for 8080

Search Table Subroutine for 6800

Search Table Subroutine for 6502

Random Number Generator for 8080

Random Number Generator for 6800

Random Number Generator for 6502

III.

Loc

000
001
002

010
on

012
013
014
015
016

SCOMP 8080
Name: SCOMP Simple Compare for 8080

. Description: Compares two 8-bit operands in the A and B regis-

ters to find (A <B), (A=B), or (A > B). The
comparison is an unsigned compare. (Both num-
bers treated as 8-bit unsigned values.) Reentrant.
Calling Sequence: (A) = Operand A
(B) = Operand B
CALL SCOMP
(A<B return)
(A=B return)
(A>B return)
Volatility: All registers returned with original contents.
Notes: By setting up the proper jumps at the three return points
this subroutine will test for A<B, A=B, A=B, A>B, or

A=B.
Contents Label Operand Arguments Comments
270 SCOMP CMP B COMPARE (A)—(B)
341 POP H RETURN ADDRESS
312 013 000 Jjz EQUAL GO IF EQUAL
332016 000 Jc LTHAN GO IF LESS THAN
043 INX H GREATER THAN
043 INX H
043 INX H
043 EQUAL INX H EQUAL
043 INX H
043 INX H
351 LTHAN PCHL RETURN

183

SHIFT 8080

I. Name: SHIFT Shift Subroutine for 8080
II. Description: Shifts the contents of (H,L) any given number of

bit positions to the right or left in a rotate type of
shift. Reentrant.

III. Calling Sequence: (A) = Number of shifts, 1 through 15. If this

number is positive, shift is right shift, if nega-
tive, shift is left shift.

(H,L) = Double-precision value to be ro-
tated.

CALL SHIFT

[Return with (H,L) shifted]

IV. Volatility: All registers returned with original contents except A,

H,L, and B.

V. Notes: This routine enables user to perform double-precision

Loc

000
001

005
006
007
010
on

012
013
014
015
016
017
020
021

024
025
026
027
030
031

032
033
034
035
036
037
040
041

184

shifts in either direction. No checks are made for shifts
greater than 15 or shifts of 0. Logical shifts may be per-
formed by calling this routine for the shift and then mask-
ing out the appropriate bits.

Contents Label Operand Arguments Comments

107 SHIFT MOV B,A

247 ANA A TEST FOR DIRECTION
372 024 000 IM ROTLF GO IF LEFT SHIFT

005 ROTRT DCR B DECREMENT INDEX
370 RM RETURN IF DONE

345 PUSH H SAVE PARTIAL RESULT
175 MoV AL LTO A

037 RAR SETUP CARRY

341 POP H RESTORE PARTIAL RES
174 MoV AH

037 RAR ROTATE MS BYTE

147 Mov H,A RESTORE M$S

175 MoV AL

037 RAR ROTATE LS BYTE

157 MOV LA RESTORE LS

303 005 000 JMP ROTRT CONTINUE

005 ROTLE DCR B ADJUST FOR INDEX
004 ROTLI INR B INCREMENT INDEX
310 RZ RETURN IF DONE

345 PUSH H SAVE PARTIAL RESULT
174 MoV AH HTO A

027 RAL SETUP CARRY

341 POP H RESTORE PARTIAL RES
175 MoV AL

027 RAL ROTATE LS BYTE

157 mov LA RESTORE

174 MOV AH

027 RAL ROTATE MS BYTE

147 Mmov H,A RESTORE

303 025 000 IMP ROTLI CONTINUE

HI.

Loc

100
103
105

107
109
10A
10B

10D
10E
110
11

1n2
114
115
116
nz
118
119
1B

SHIFT 6800

. Name: SHIFT Double-Precision Shift Subroutine for 6800
1I.

Description: Shifts the contents of A,B any given number of bit

positions to the right or left in a rotate type of shift.
Reentrant.

Calling Sequence: (X) = Number of shifts, 1 through 15. If this

number is positive, shift is right shift, if nega-
tive, shift is left shift.

(A,B) = Double-precision number to be ro-
tated.

JSR SHIFT

(Return with A,B shifted)

. Volatility: All registers used.

Notes: This routine enables the user to perform double-length

shifts in either direction. No checks are made for shifts
greater than 15 or shifts of 0. Logical shifts may be per-
formed by calling this routine and then masking out the
appropriate bits.

Contents Label Operand Arguments Comments

8C 00 00 SHIFT CPX #0 TEST DIRECTION

2B 0B BMI SHFLF GO IF LEFT SHIFT
08 INX ADJUST

09 Loor DEX DECREMENT COUNT
2712 BEQ DONE GO IF DONE

36 PSHA

46 RORA SET CARRY

32 PULA

56 RORB RIGHT SHIFT WITH C
46 RORA ROTATE

20 F6 BRA LOOP CONTINUE

09 SHFLF DEX ADJUST FOR TEST
08 LOP1 INX INCREMENT COUNT
27 07 BEQ DONE GO IF DONE

37 PSHB

59 ROLB SET CARRY

33 PULB

49 ROLA LEFT SHIFT WITH C
59 ROLB

20 F6 BRA LOP1 CONTINUE

39 DONE RTS RETURN

185

SHIFT 6502

1. Name: SHIFT Double-Precision Shift Subroutine for 6502
II. Description: Shifts the contents of two memory locations, treated
as a 16-bit double-precision number, any given
number of bit positions to the right or left in a
rotate type of shift.

IIL. Calling Sequence: (X) = Number of shifts, 1 through 15. If this
number is positive, shift is right shift, if nega-
tive, shift is left shift.

(MSDP,LSDP) = Double-precision number
to be rotated (Z Page)

JSR SHIFT

[Return with (MSDP,LSDP) shifted]

IV. Volatility: All registers used.

V. Notes: This routine enables the user to perform double-length
shifts in either direction. No checks are made for shifts
greater than 15 or shifts of 0. Logical shifts may be per-
formed by calling this routine and then masking out the
appropriate bits.

Loc Contents Label Operand Arguments Comments

200 EO 00 SHIFT CPX #0 FIND DIRECTION
202 3020 BMI LFSHF GO IF LEFT

204 CA LooP DEX DECREMENT COUNT
205 302B BMI DONE GO IF DONE

207 A0O00 LDY #0 SETUP CARRY FLAG
209 46YY LSR LSDP SET CARRY WITH LSB
208 9001 BCC NOC1 GO IF NO CARRY
200 C8 INY CARRY

20E 46 XX NOC1 LSR MSDP SHIFT MS BYTE

210 9006 BCC NOC2 GO IF NO CARRY
212 A5YY LDA LSDP GET LS BYTE

214 0980 ORA #$80

216 85YY STA LSDP SET MSB

218 €000 NOC2 cPY #0 TEST FOR CARRY FLAG
21A FOE8 BEQ LoopP GO IF NO CARRY
21C A5 XX LDA MSDP

21E 09 80 ORA #$80 SET MSB OF MS BYTE
220 85 XX STA MSDP

222 30 EO BMI LOOP CONTINUE (JMP)

224 CA LFSHF DEX INITIAL ADJUST

225 E8 LOP1 INX INCREMENT COUNT
226 FO OA BEQ DONE GO IF DONE

228 A5YY LDA LSDP GET LS BYTE

2A 2A ROL A SET OR RESET CARRY
22B 26 XX ROL MSDP

22D 26 YY ROL LSDP ROTATE

22F 4C 2502 JMP LOP1 CONTINUE

232 60 DONE RTS RETURN

186

1L
III.

Loc
000

002
003
004
007
012
013
014
017
022
023
024

Contents

365
325
257
005
312 022 000
021 012 000
033
272
312 003 000
303 012 000
321
361
31

Label
TIME

TIME1

Loor

DONE

VALUE

TIME 8080

Name: TIME Timing Loop for 8080

Description: Provides a variable time delay.

Calling Sequence: (B) = Timing count 1 to 255

CALL TIME

(Return after time)

Volatility: All registers returned with original contents except B.

Notes: With VALUE set to decimal 69, the increment per timing
count is approximately 1 millisecond. The timing loop
will then be 1 millisecond to 0.255 second. VALUE can
be adjusted for longer time delays by using the following
formula:
Time = (B) X 14.5 X VALUE for time in microseconds
The above assumes a 2-MHz clock on the microcomputer
with no memory waits.

Operand

PUSH
PUSH
XRA
DCR
Jz
LXI
DCX
mp
JZ
JMP
POP
pOP
RET
EQU

Arguments Comments

PSW SAVE A

D SAVE D

A CLEAR A FOR COMPARE
B DECREMENT TIME COUNT
DONE GO IF DONE

D,VALUE SETUP INNER LOOP

D DECREMENT 16 BITS

D COMPARE TO 0

TIME1 GO IF INNER LOOP DONE
LOOP NOT DONE

D RESTORE D

PSw RESTORE A

10 DECIMAL 10

187

IL
III.

Loc

100
103

105
107
10A
10D
10F
110
118
116
nz

188

TIME 6800

. Name: TIME Timing Loop for 6800

Description: Provides a variable time delay.
Calling Sequence: (A) = Timing count 1 to 255
JSR TIME
(Return after time)
Volatility: All registers returned with original contents except A.
Notes: With VALUE set to decimal 66, the increment per timing
count is approximately 1 millisecond. The timing loop
will then be 1 milliseconds to 0.255 second. VALUE can
be adjusted for longer time delays by using the following
approximate formula:
Time = (A) X 80 X VALUE for time in microseconds.
The above assumes a 1-MHz clock on the microcomputer
with no memory waits.

Contents Label Operand Arguments Comments
FF 01 17 TIME STX SAVEX SAVE INDEX
4C INCA ADJUST
4A LOP1 DECA COUNT — 1
27 0C BEQ DONE GO IF DONE
CE 00 0A LDX #VALUE
8C 00 00 LOOP CPX #o TEST FOR O
27 F5 BEQ LOP1 GO IF DONE
09 DEX DECR INNER LOOP CNT
7E 01 0A JMP LOOP
FE 01 17 DONE LDX SAVEX RESTORE INDEX
39 RTS RETURN

SAVEX RMB 2

VALUE EQU 10

IL
111.

Loc

200
202
204

207
208
20A
208
20D
20F

TIME 6502

Name: TIME Timing Loop for 6502
Description: Provides a variable time delay.
Calling Sequence: (A) = Timing count 1 to 255

JSR TIME
(Return after time)

Volatility: All registers used.
Notes: With CNT1 and CNT2 set to 11 and 30, the increment

per timing count is approximately 1 millisecond. The tim-
ing loop will then be 1 millisecond to 0.255 second. CNT1
and CNT?2 can be adjusted for other time delays by using
the following approximate formula for larger values of
CNT1 and CNT2:
Time = 10 X COUNT x CNT1 x CNT2
for time in microseconds

The above assumes a 1-MHz clock on the microcomputer
with no memory waits.

Contents Label Operand Arguments Comments
A0 1E TIME LDY #CNT2 SETUP SECOND LOOP
A2 0B LOOP2 LDX H#CNTI SETUP THIRD LOOP
CA LOOP1 DEX INNERMOST LOOP
DO FD BNE LOOPI GO IF NOT DONE
88 DEY DECREMENT NEXT CNT
DO F8 BNE LOOP2
18 cLc CLEAR C FOR ADD
69 FF ADC H#—1 DECREMENT QUTER CNT
DO F1 BNE TIME GO IF NOT DONE
60 RTS RETURN
CNT1 EQU 1
CNT2 EQU 30

189

UNSPM 8080

I. Name: UNSPM Unsigned Single-Precision Multiply for 8080
II. Description: This subroutine multiplies a 16-bit unsigned num-
ber in D,E by an 8-bit unsigned number in A. The
product returns in H,L. Reentrant.
III. Calling Sequence: (D,E) = Multiplicand
(A) = Multiplier
CALL UNSPM
[Return with (H,L) = Product]
IV. Volatility: Aliiregisters returned with original values except H,L,
and B.
V. Notes: No check is made on overflow condition. May be used as
a single-precision multiply with (D) = 0 and sp operand
in E.
A signed multiply can be implemented by taking absolute
values of the operands, calling this subroutine, and then
converting the product to the proper sign.

Loc Contents Label Operand Arguments Comments

000 041 000 000 UNSPM LXI H,0 CLEAR PRODUCT

003 006010 MVi B,8 SETUP COUNT

005 051 LooP DAD H SHIFT PARTIAL PRODUCT
006 007 RLC ROTATE M’IER BIT

007 322 013 000 JNC NOC GO IF NOT 1

012 031 DAD D 1 — ADD M'CAND

013 005 NOC DCR B DECREMENT COUNT

014 302 005 000 INZ LOOP CONTINUE

017 311 RET RETURN

190

UNSPM 6800

I. Name: UNSPM Unsigned Single-Precision Multiply for 6800
II. Description: This subroutine multiplies a 16-bit unsigned num-
ber in MCAND,MCAND-+1 by an 8-bit unsigned
number in the A accumulator. The product returns
in RES,RES+1. Not reentrant.

IL. Calling Sequence: (MCAND MCAND+1) = Multiplicand

(A) = Multiplier
JSR UNSPM
[Return with (RES,RES+1) = Product]

IV. Volatility: All registers used. Multiplier destroyed. Multiplicand

preserved.

V. Notes: No check is made on overflow condition. May be used as
a single-precision multiply with MCAND =0 and
MCAND+1 = sp operand.
A signed multiply can be implemented by taking absolute
values of the operands, calling this subroutine, and then
converting the product to the proper sign.

Loc

100
103
104
106
108
10B
10E
10F
m

13
115
nuz
19
1ns
11D
11E
120

Contents Label Operand
CE 0008 UNSPM LDX
5F CLRB
D7 XX STAB
D7 YY STAB
78 00 YY LOOP ASL
79 00 XX ROL
48 ASLA
24 oC BCC
D6 ZZ LDAB
DBYY ADDB
D7 YY STAB
D6 WW LDAB
D9 XX ADCB
D7 XX STAB
09 NOC DEX
26 E8 BNE
39 RTS

Arguments Comments

1#8

RES
RES-+1
RES+1
RES

NOC
MCAND-+1
RES-++1
RES+1
MCAND
RES

RES

LooP

SETUP INDEX
CLEAR RESULT
SHIFT PARTIAL PRODUCT

SHIFT QUT M'IER BIT
GO IF NO CARRY
GET M'CAND LS
ADD RES LS

FIND PARTIAL PROD
GET M'CAND MS
ADD RES MS

FIND PARTIAL PROD
DECREMENT COUNT
CONTINUE

RETURN FROM SUBR

191

UNSPM 6502

I. Name: UNSPM Unsigned Single-Precision Multiply for 6502
II. Description: See UNSPM 6800.
III. Calling Sequence: See UNSPM 6800.
1V. Volatility: All registers used.
: V. Notes: See UNSPM 6800.

Loc Contents Label Operand Arguments Comments

200 48 UNSPM PHA SAVE M’IER

201 A9 00 LDA #0 ZERO RESULT

203 85 XX STA RES

205 85YY STA RES41

207 68 PLA RESTORE M’IER

208 A208 LDX #8 SETUP COUNT

20A 18 Loop cLc

208 26 YY ROL RES41 SHIFT PARTIAL PRODUCT
200 26 XX ROL RES

20F O0A ASL A SHIFT OUT M'IER BIT
210 90 OF BCC NOCI GO IF NO CARRY
212 A8 TAY SAVE M'IER

213 ASYY LDA RES+1 GET RESULT LS

215 18 cic FOR ADD

216 65 WW ADC MCAND-1 GET RESULT LS

218 85YY STA RES+1

21A A5 XX LDA RES GET RESULT MS
21C 65VV ADC MCAND ADD MCAND MS
21E 85 XX STA RES NEW RESULT MS
220 98 TYA RESTORE M'IER

221 CA NOCI DEX DECREMENT COUNT
222 DOE6 BNE LooP GO IF NOT DONE
224 60 RTS RETURN

192

II.

1.

1v.

UNSPD 8080

Name: UNSPD Unsigned Single-Precision Divide for 8080
Description: This subroutine divides a 16-bit unsigned number
in H,L. by an 8-bit unsigned number in B. The quo-
tient returns in H,L and the remainder returns in A.
Reentrant.
Calling Sequence: (H,L) = Dividend
(B) = Divisor

JSR UNSPD
[Return with (H,L) = Quotient, (A) =
remainder]
Volatility: All registers returned with original values except A
and H,L.

Notes: No check is made on division by zero. May be used as a
single-precision divide by clearing H and putting dividend

in L.
Contents Label Operand Arguments Comments
305 UNSPD PUSH B SAVE B,C
257 XRA A CLEAR A FOR REMAINDER
016 021 MVi ca7 SETUP COUNT
303 014 000 JMP START
220 LOOP SuUB B A—B
362 021 000 P NREST GO IF NO RESTORE
200 ADD B RESTORE
051 START DAD H SHIFT H,L LEFT
027 RAL ZERO TO Q
303 024 000 JMP CONT CONTINUE
051 NREST DAD H SHIFT H,L LEFT
027 RAL INTO A
043 INX H ONE FOR Q
015 CONT DCR C DECREMENT COUNT
302 007 000 JNZ LooP GO IF NOT DONE
037 RAR RESTORE REMAINDER
301 POP B RESTORE B,C
31 RET RETURN

193

I11.

Loc

100
103
106
108
10A
10C
10E
10F
m
13
114
117
1A
118
11D
120
122

194

UNSPD 6800
Name: UNSPD Unsigned Single-Precision Divide for 6800

. Description: This subroutine divides a 16-bit unsigned number

in (DVDN, DVDN+1) by an 8-bit unsigned num-
ber in (DVSR). The quotient returns in DVDN,
DVDN+1 and the remainder returns in RMNDR.
Calling Sequence: (DVDN,DVDN+1) = Dividend
(DVSR) = Divisor
JSR UNSPD
[Return with (DVDN,DVDN-+1) = quotient,
(RMNDR) = remainder]
Volatility: The B accumulator is not used.
Notes: No check is made on division by zero. May be used as a
single-precision divide by clearing DVDN and putting

dividend in DVDN+1.
Contents Label Operand Arguments Comments
7F 00 XX UNSPD CLA RMNDR CLEAR REMAINDER
CE00 11 LDX #17 SETUP COUNT
20 06 BRA START START
96 XX LOOP LDAA RMNDR GET CURRENT MS BYTE
90 WW SUBA DVSR SUBTRACT
2A 03 BPL NREST GO IF NO RESTORE
oc START cLc CLEAR CARRY
20 03 BRA MERGQ GO TO SET Q
97 XX NREST STAA RMNDR NEW PARTIAL Q
oD SEC SET C FOR Q=1
79 00 ZZ MERGQ ROL DVDN41 MERGE Q
79 00 YY ROL DVDN
09 DEX DECREMENT COUNT
27 05 BEQ RTN GO IF DONE
79 XX ROL RMNDR SHIFT BIT
26 E6 BRA LooP CONTINUE
39 RTN RTS RETURN

II. Description: See UNSPD 6800.

UNSPD 6502
I. Name: UNSPD Unsigned Single-Precision Divide for 6502

III. Calling Sequence: See UNSPD 6800.
Volatility: Y register not used and returned with original contents.
Notes: See UNSPD 6800.

IV.
V.

Loc

200
202
204
206
209
208
20C
20E
210
21

214
216
217
219
218
21C
21E
220
223

Contents

A9 00
85 XX
A2 11
4C 10 02
A5 XX
38

ES Ww
10 04
18

4C 17 02
85 XX
38

26 ZZ
26 YY
CA

FO 05

26 XX
4C 0902
60

Label
UNSPD

Loorp

START

NREST

MERGQ

RTN

Operand

LDA
STA
LDX
JMP
LDA
SEC
SBC
BPL

CLc
JMP
STA
SEC

ROL
ROL
DEX
BEQ
ROL
JMP
RTS

Arguments Comments

#0
RMNDR
#17
START
RMNDR

DVSR
NREST

MERGQ
RMNDR

DVDN-+1
DVDN

RTN
RMNDR
Loor

ZERO REMAINDER

SETUP COUNT

START

GET CURRENT RESIDUE
SET C FOR SUB

GO IF NO RESTORE
Q=0

GO TO SET Q

NEW RESIDUE

Q=1

DECREMENT COUNT
GO IF DONE

SHIFT LEFT
CONTINUE

RETURN

195

IL.

IIL

Iv.

Loc

000
001
003
004
005
006
007
010
011

012
015
016
017
020
021

022
025
026

196

MPADD 8080

Name: MPADD Multiple-Precision Add for 8080
Description: This subroutine adds two N-precision numbers.
From single- to 127-byte precision can be used.
Both operands are in memory. The destination op-
erand is added to the source operand and the N-
precision result replaces the destination operand.
Reentrant.
Calling Sequence: (C) = Precision, 1to N
(D,E) = Start of source operand
(H,L) = Start of destination operand
CALL MPADD
(Return with result in destination operand)
Volatility: All registers returned with original values.
Notes: No check is made on overflow.

Contents Label Operand Arguments Comments

305 MPADD PUSH B SAVE B,C

006 000 MVI B,0 SETUP FOR ADD

011 DAD B POINT TO LAST BYTE41
353 XCHG SWAP

on DAD B LAST BYTE OF SRCE+-1
353 XCHG SWAP BACK

067 STC

077 CMC CLEAR CARRY

015 Loop DCR c DECREMENT COUNT
372 025 000 M DONE GO IF DONE

033 DCX D GO TO NEXT HIGHER ORDER
053 DCX H

032 LDAX D GET SOURCE

216 ADC M ADD DEST 4+ C

167 MOV MA REPLACE DEST BYTE
303 011 000 IMP LoOP

301 DONE POP B RESTORE B,C

3n RET RETURN

MPADD 6800

I. Name: MPADD Multiple-Precision Add for 6800
II. Description: See MPADD 8080. Reentrant.
HI. Calling Sequence: (A) = Precision, 1 to N
(SRCE) = Start of source operand
(DEST) = Start of destination operand
JSR MPADD
(Return with result in operation operand)
IV. Volatility: B accumulator restored to original value.
V. Notes: No check is made on overflow.

Loc Contents Label Operand Arguments Comments

100 37 MPADD PSHB SAVE B

101 oC cLc CLEAR CARRY FIRST TIME
102 4A Loop DECA

103 2B15 BMI DONE GO IF DONE

105 B701 11 STAA INST1 41 MODIFY DISPLACEMENTS
108 B70115 STAA INST2 41

108 B70117 STAA INST3 41

10E DE XX LDX SRCE GET SOURCE PNTR

110 E600 INSTI LDAB X GET SOURCE BYTE

112 DEYY LDX DEST GET DEST PNTR

114 E900 INST2 ADCB X SOURCE + DEST

116 E700 INST3 STAB X STORE IN DEST

118 20E8 BRA LOOP CONTINUE

1A 33 DONE PULB RESTORE B

118 39 RTS RETURN

197

MPADD 6502

I. Name: MPADD Multiple-Precision Add for 6502
II. Description: This subroutine adds two N-precision numbers.
From single- to 127-byte precision can be used.
Both operands are in memory. The destination op-
erand is added to the source operand and the N-
precision result replaces the destination operand.
III. Calling Sequence: (X) = Precision, 1 through N
(SRCE) = Start of source operand
(DEST) = Start of destination operand
JSR MPADD
(Return with result in destination operand)
IV. Volatility: All registers used.
V. Notes: Locations SRCE and DEST are assumed in page 0 speci-
fying 16-bit addresses (LS byte followed by MS byte).

Loc Contents Label Operand Arguments Comments

200 8A MPADD TXA X TO Y FOR ACCESS
201 A8 TAY

202 88 DEY POINT TO LAST BYTE
203 18 cLe CLEAR C FOR ADD
204 CA LOOP DEX DECREMENT COUNT
205 300A BMI DONE GO IF DONE

207 Bl XX LDA (SRCE),Y GET SOURCE BYTE
209 71YY ADC (DEST),Y ADD DEST BYTE

208 91YY STA (DEST),Y SAVE RESULT

200 88 DEY POINT TO HIGHER ORDER
20E 4C 0402 IMP LOOP CONTINUE

211 60 DONE RTS RETURN

198

MPSUB 8080

I. Name: MPSUB Multiple-Precision Subtract for 8080
II. Description: This subroutine subtracts two N-precision numbers.
From single- to 127-byte precision can be used.
Both operands are in memory. The destination op-
erand is subtracted from the source operand and
the N-precision result replaces the destination oper-
and. Reentrant.
II1. Calling Sequence: (C) = Precision, 1 to N
(D,E) = Start of source operand
(H,L) = Start of destination operand
CALL MPSUB
(Return with result in destination operand)
IV. Volarility: All registers returned with original values.
V. Notes: No check is made on overflow.

Loc Contents Label Operand Arguments Comments

000 305 MPADD PUSH B SAVE B8,C

001 006 000 Mvi B,0 SETUP FOR ADD

003 011 DAD B POINT TO LAST BYTEH1
004 353 XCHG SWAP

005 011 DAD B LAST BYTE OF SRCE+1
006 353 XCHG SWAP BACK

007 067 sTC

ol0 077 CMC CLEAR CARRY

011 0I5 LOOP DCR C DECREMENT COUNT
012 372 025 000 M DONE GO IF DONE

015 033 DCX D GO TO NEXT HIGHER
016 053 DCX H ORDER

017 032 LDAX D GET SOURCE

020 236 SBB M SOURCE - DEST - B
021 167 MOV MA REPLACE DEST BYTE
022 303 011 000 IMP LOOP

025 301 DONE POP B RESTORE B,C

026 311 RET RETURN

199

II.
II1.

Iv.
V.

Loc

100
101

102
103
105
108
10B
10E
110
12
114
116
118
11A
118

200

Description: See MPSUB 8080. Reentrant.
Calling Sequence: (A) = Precision, 1 to N

Contents

MPSUB 6800
I. Name: MPSUB Multiple-Precision Subtract for 6800

(SRCE) = Start of source operand
(DEST) = Start of destination operand
JSR MPSUB
(Return with result in destination operand)
Volatility: B accumulator restored to original value.

Notes: No check is made on overflow.

Label
MPADD

Loor

INSTI

INST2
INST3

DONE

Operand Arguments Comments

PSHB
CLC
DECA
BMI
STAA
STAA
STAA
LDX
LDAB
LDX
SBCB
STAB
BRA
PULB
RTS

DONE
INST1H1
INST2-+1
INST3-+1
SRCE

DEST

LOOP

SAVE B
CLEAR CARRY FIRST TIME

GO IF DONE
MODIFY DISPLACEMENTS

GET SOURCE PNTR
GET SOURCE BYTE
GET DEST PNTR
SOURCE-DEST
STORE IN DEST
CONTINUE
RESTORE B
RETURN

erand.

MPSUB 6502

I. Name: MPSUB Multiple-Precision Subtract for 6502
II. Description: This subroutine subtracts two N-precision numbers.
From single- to 127-byte precision can be used.
Both operands are in memory. The destination op-
erand is subtracted from the source operand and
the N-precision result replaces the destination op-

II1. Calling Sequence: See MPADD 6502.

IV. Volatility: All registers used.

V. Notes: Locations SRCE and DEST assumed in page 0 specifying
16-bit addresses (LS byte followed by MS byte).

Loc

200
201

202
203
204
205
207
209
208
20D
20
n

Contents

Label
MPSUB

LOOP

DONE

Operand Arguments Comments

TXA
TAY
DEY
SEC
DEX
BMI

LDA
$BC

STA
DEY
JMP
RTS

DONE

(SRCE),Y
(DEST),Y
(DEST),Y

LOOP

X TO Y FOR ACCESS

POINT TO LAST BYTE

SET C FOR SUB
DECREMENT COUNT

GO IF DONE

GET SOURCE BYTE

SUB DEST BYTE

SAVE RESULT

POINT TO HIGHER ORDER
CONTINUE

RETURN

201

ASBXB 8080

1. Name: ASBXB ASCII Binary to Binary Subroutine for 8080

1. Description: This subroutine converts an 8-character ASCII

string, assumed to be ASCII zeros and ones, to an
8-bit binary value. Reentrant.

III. Calling Sequence: (H,L) = Address of start of string

CALL ASBXB
[Return with (B) = binary value]

IV. Volatility: All registers returned with original values except B
and H,L. (H,L.) points to last ASCII character plus
one.

V. Notes: Continuing calls may be made to ASBXB with returned
value in H,L to convert a longer string of binary values.

Loc Contents Label Operand Arguments Comments

000 365 ASBXB PUSH PSW SAVE A

001 325 PUSH D SAVE D

002 006000 MVI B,0 ZERO RESULT

004 026 011 MVI D,9 INITIALIZE COUNT
006 025 LOOP DCR D DECREMENT INDEX
007 312 027 000 3z DONE GO IF DONE

012 176 MOV AM GET NEXT CHARACTER
013 346177 AN} 0177 GET SEVEN BITS

015 326 060 Ssul 060 CONVERT TO BINARY
017 037 RAR SET CARRY

020 170 MOV A,B GET PARTIAL RESULT
021 027 RAL MERGE CARRY

022 107 MOV B,A

023 043 INX H POINT TO NEXT

024 303 006 000 JMP LOOP CONTINUE

027 321 DONE POP D RESTORE D

030 361 POP PSW RESTORE A

031 3n RET RETURN

202

II.

1.

V.

Loc

100

103
104
105

109
108
10C
10D
10E
10F
m
112
113
115
116

ASBXB 6800

Name: ASBXB ASCII Binary to Binary Subroutine for 6800
Description: This subroutine converts an 8-character ASCII
string, assumed to be ASCII zeros and ones, to an

8-bit binary value. Reentrant.

Calling Sequence: (X) = Address of start of string
JSR ASBXB
[Return with (A) = binary value]
Volatility: B register restored with original contents. X register
points to last ASCII character plus one.
Notes: Continuing calls may be made to ASBXB with returned
pointer in X to convert a longer string of binary values.

Contents Label Operand Arguments Comments

37 ASBXB PSHB SAVE B

86 08 LDAA #8 INDEX COUNT

36 PSHA SAVE

4F CLRA CLEAR RESULT

E6 00 LOOP LDAB X GET NEXT ASCII CHAR
C47F ANDB H$7F GET SEVEN BITS

€0 30 SUBB 1#$30 CONVERT TO 0 OR 1
1B ABA MERGE INTO RESULT
08 INX BUMP POINTER

33 PULB GET COUNT

5A DECB DECREMENT

27 04 BEQ DONE GO IF DONE

37 PSHB SAVE COUNT

48 ASLA SHIFT FOR NEXT BIT
20 FO BRA LooP

33 DONE PULB RESTORE B

39 RTS RETURN

203

1I.

III.

Iv.

Loc

200
202
203
205

209
208
20C
20E

211
212
214
215

217
21A
21B
21D
21E

222
224
226
227

204

ASBXB 6502

Name: ASBXB ASCII Binary to Binary Subroutine for 6502
Description: This subroutine converts an 8-character ASCII

string, assumed to be ASCII zeros and ones to an
8-bit binary value.

Calling Sequence: (DEST) = Address of start of string

JSR ASBXB
[Return with (A) = binary value]

Volatility: All registers used.

Notes: Continuing calls may be made to ASBXB with returned
pointer in DEST to convert a longer string of binary
values. DEST assumed to be in page O and specifying a
16-bit address (LS byte followed by MS byte).

Contents Label Operand Arguments Comments

A9 00 ASBXB LDA #0 CLEAR RESULT

48 PHA SAVE

A2 08 LDX #8 INITIALIZE COUNT
A0 00 LDY 1#o INITIALIZE INDEX
Bl XX LOOP DA (DEST),Y GET ASCI! BYTE

29 7F AND #TF GET SEVEN BITS

18 cLe

E9 30 SBC #$30 CONVERT TO BINARY
68 PLA GET RESULT

69 00 ADC #0 MERGE CARRY

CcA DEX DECREMENT COUNT
F0 06 BEQ DONE GO IF DONE

0A ASL SHIFT

48 PHA SAVE

cs INY POINT TO NEXT CHAR
4C 07 02 JMP LOOP CONTINUE

48 DONE PHA

A5 XX LDA DEST GET LS ADDRESS

18 cLe

69 08 ADC #8 POINT TO NEXT

85 XX STA DEST

90 02 BCC NOC GO IF NO CARRY
E6YY INC DESTH41 BUMP MS ADDRESS
68 NOC PLA RESTORE RESULT

60 RTS RETURN

ASDXB 8080

I. Name: ASDXB ASCII Decimal to Binary Subroutine for 8080
I. Description: This subroutine converts a five-character ASCII
string, assumed to be ASCII decimal digits, to a
16-bit binary value. Reentrant.

[Return with (D,E) = value]
III. Calling Sequence: (H,L) = Address of start of string
CALL ASDXB
IV. Volatility: All registers returned with original values except D,E
and H,L. (H,L) points to last ASCII character plus

one.

V. Notes: Continuing calls may be made to ASDXB with returned
pointer in H,LL to convert a longer string of decimal
values. Conversion of single-precision values is accom-
plished by padding the first two characters of the string
with blanks and obtaining an 8-bit value in C.

Conversion of negated values may be handled by bypass-
ing any sign character, converting, and then adjusting

for sign.

Contents Label

365 ASDXB
305

026 005

325

021 000 000

176 LOOP
346 177

326 060

203

137

301

005

312 041 000

305

353

051

345

051

051

301

o

353

043

303 010 000

043 DONE
301

361

31

Operand

PUSH
PUSH
Mvi
PUSH
LXI1
Mov
ANI
NU
ADD
MoV
POP
DCR
Jz
PUSH
XCHG
DAD
PUSH
DAD
DAD
POP
DAD
XCHG
INX
JMP
INX
POP
POP
RET

Arguments Comments

PSW
B
D,5
D
D,0
AM
0177
060
E
EA
B

B
DONE
B

wwITr T I X

LooP

PSW

SAVE A
SAVE B,C

INITIALIZE INDEX
INITIALIZE RESULT
GET CHARACTER
GET SEVEN BITS
CONVERT TO BCD
MERGE IN RESULT
SAVE IN D,E

GET INDEX
DECREMENT COUNT
GO IF DONE

NOT DONE

SWAP

TIMES 2

SAVE

TIMES 4

TIMES 8

GET TIMES 2

NOW TIMES 10

POINT TO NEXT CHAR
CONTINUE

POINT TO LAST41
RESTORE B,C
RESTORE A

RETURN

205

I. Name: ASDXB

ASDXB 6800

ASCII Decimal to Binary Subroutine for 6800

II. Description: This subroutine converts a five-character ASCII

string, assumed to be ASCII decimal digits, to a
16-bit binary value.

III. Calling Sequence: (X) = Address of start of string

IV. Volatility: All registers used.
V. Notes: See ASDXB 8080. Pointer in X.

Loc

100
103
106
108
10A
10C
10E
110
112
114
17
118
1A
1s
11D
1F
122
124
126
128
12A
128
12D
12E
130
131

133
135

206

Contents

7F 00 XX
7F 00 YY

Label
ASDXB

LOOP

NOC

DONE

Operand

CLR
CLR
LDAB
LDAA
ANDA
SUBA
ADDA
STAA
BCC
INC
DECB
BMI
PSHB
STX
LDAA
JSR
LDAA
STAA
LDAA
STAA
PULB
LDX
INX
BRA
INX
LDAA
LDAB
RTS

JSR ASDXB
[Return with (A,B) = result]

Arguments Comments

MCAND
MCAND+-1
4

X

H#$7F
#$30
MCANDH-1
MCAND--1
NOC
MCAND

DONE

TEMPI1
#10
UNSPM
RES
MCAND
RES-1
MCAND--1

TEMP1
LOOP

MCAND
MCAND+-1

CLEAR M'CAND
INITIALIZE COUNT
GET CHAR

GET SEVEN BITS
CONVERT TO BCD

ADD TO PARTIAL RESULT
GO IF NO CARRY

DECREMENT COUNT
GO IF DONE

SAVE CNT

SAVE INDEX

10 TIMES RESULT

TRANSFER PRODUCT
RESTORE B

RESTORE X

POINT TO LOWER ORDER
CONTINUE

POINT TO LAST+4-1

GET RESULT
RETURN

ASDXB 6502

I. Name: ASDXB ASCII Decimal to Binary Subroutine for 6502
II. Description: This subroutine converts a five-character ASCII
string, assumed to be ASCII decimal digits, to a
16-bit binary value.
III. Calling Sequence: (DEST) = Address of start of string
JSR ASDXB
[Return with (MCAND,MCAND-+1) =
result]
IV. Volatility: All registers used.
V. Notes: See ASDXB 8080. Pointer in DEST assumed to be page 0
specifying 16-bit address (LS byte followed by MS byte).

Loc Contents Label Operand Arguments Comments

200 A900 ASDXB LDA #0

202 85 XX STA MCAND

204 85YY STA MCAND-+1 ZERO MCAND
206 A8 TAY

207 BlUU LOOP LDA (DEST),Y GET ASCII CHAR
209 29 7F AND H#$7F SEVEN BITS

208 38 SEC

20C E930 SBC #$30 CONVERT TO BCD
20E 18 cLc

20F 65YY ADC MCAND-+1

211 85YY STA MCAND-+1 ADD TO PARTIAL RESULT
213 9002 BCC NOC GO IF NO CARRY
215 E6 XX INC MCAND

217 c8 NOC INY

218 €005 cPY #5 TEST FOR DONE
21A FO16 BEQ DONE GO IF DONE

21C A90A LDA #10

21E 8C3E02 STY TEMP SAVE Y

221 20 XX XX* JSR UNSPM 10 TIMES

224 AC3EO02 LDY TEMP RESTORE Y

227 A5SS LDA RES

229 85 XX STA MCAND

228 A5TT LDA RES+1

22D 85YY STA MCAND-4-1 TRANSFER PRODUCT
22F 4C0702 IJMP Loor

232 A5UU DONE LDA DEST

234 18 cLe

235 6905 ADC #5

237 850U STA DEST POINT TO LAST-+H1
239 9002 BCC NOCI

238 E6VV INC DEST41 BUMP MS ADDRESS
23D 60 NOC1 RTS RETURN

23E TEMP RMB 1

207

IL.

II1.

Iv.

208

ASOXB 8080

Name: ASOXB ASCII Octal to Binary Subroutine for 8080

Description: This subroutine converts a six-character ASCII
string, assumed to be ASCII octal digits, to a 16-
bit binary value. Reentrant.

Calling Sequence: (H,L) = Address of start of string

CALL ASOXB
[Return with (B,C) = value]

Volatility: All registers returned with original values except B,C
and H,L. (H,L) points to last ASCII character plus
one.

Notes: Continuing calls may be made to ASOXB with returned
value in H,L to convert a longer string of binary values.
Conversion of single-precision values is accomplished by
padding the first three characters of the string with blanks
and obtaining an 8-bit value in C. ’

Contents Label Operand Arguments Comments

365 ASOXB PUSH PSW SAVE A

325 PUSH D SAVE D

001 000 000 LXI B,0 ZERO RESULT

026 006 MVI D,6 INITIALIZE COUNT
176 Loop MOV AM GET NEXT CHARACTER
346177 ANI 0177 GET SEVEN BITS

326 060 SUl 060 CONVERT TO OCTAL
261 ORA Cc MERGE WITH PARTIAL RES
17 Mmov C,A

043 INX H POINT TO NEXT CHAR
025 DCR D DECREMENT INDEX
312037 000 Jz DONE GO IF DONE

345 PUSH H SAVE H,L

305 PUSH B TRANSFER B

341 POP H

051 DAD H

051 DAD H

051 DAD H SHIFT LEFT 3 BITS

345 PUSH H TRANSFER TO B

301 POP B

341 POP H RESTORE POINTER

303 007 000 JMP LOOP

321 DONE POP D RESTORE D,

361 POP PSW RESTORE A

311 RET

IL

111

Iv.

ASHXB 8080

Name: ASHXB ASCII Hexadecimal to Binary Subroutine for
8080
Description: This subroutine converts a two-character ASCII
string, assumed to be ASCII hexadecimal digits, to
an 8-bit binary value. Reentrant.
Calling Sequence: (H,L) = Address of start of string
CALL ASHXB
[Return with (B) = value]

Volatility: All registers returned with original values except B
and H,L. (H,L) points to last ASCII character plus
one.

Notes: Continuing calls may be made to ASHXB with returned

pointer in H,L to convert a longer string of hexadecimal

values.
Contents Label Operand Arguments Comments
365 ASHXB PUSH PSW SAVE A
176 MoV AM GET FIRST CHARACTER
315 024 000 CALL CONVT CONVERT TO HEX
207 ADD A
207 ADD A
207 ADD A
207 ADD A SHIFT TO MS 4 BITS
107 Mmov B,A SAVE IN B
043 INX H POINT TO NEXT CHAR
176 Mov AM GET NEXT CHAR
315 024 000 CALL CONVT CONVERT TO HEX
260 ORA B MERGE FIRST
107 mov B,A RETURN IN B
043 INX H BUMP FOR RETURN
361 POP PSW RESTORE A
311 RET RETURN
346 177 CONVT ANI 0177 GET SEVEN BITS
326 060 Sul 060 START CONVERT
376 012 cPl 10 TEST FOR ALPHA
372037 000 M CONT GO IF0—9
326 007 sul 7 CONVERT A —F
311 CONT RET RETURN TO ASHXB

209

ASHXB 6800

I. Name: ASHXB ASCII Hexadecimal to Binary Subroutine for
6800
II. Description: See ASHXB 8080. Reentrant.
II1. Calling Sequence: (X) = Address of start of string
JSR ASHXB
[Return with (A) = value]
IV. Volatility: B accumulator not used. X register points to last
ASCII character plus one.
V. Notes: Continuing calls may be made to ASHXB with returned
pointer in X to convert a longer string of hexadecimal

values.
Loc Contents Label Operand Arguments Comments
100 37 ASBXB PSHB SAVE B
101 A600 LDAA X GET FIRST ASCII CHAR
103 8D OE BSR CVERT CONVERT TO BINARY
105 16 TAB SAVE
106 08 INX POINT TO NEXT CHAR
107 A6 00 LDAA X GET NEXT ASCII CHAR
109 8DO08 BSR CVERT CONVERT TO BINARY
108 58 ASLB
10C 58 ASLB
1ob 58 ASLB
10E 58 ASLB ALIGN SECOND DIGIT
10F 1B ABA MERGE
110 08 INX POINT TO NEXT FOR RTN
1M 33 PULB RESTORE B
112 39 RTS RETURN
113 84 7F CVERT ANDA H$7F GET SEVEN BITS
115 8030 SUBA #$30 FIND DISPLACEMENT
117 81 0A CMPA 10 TEST FOR0O — 9
119 2802 BMI NAD GO IF0O—9
11B 80 07 SUBA 77 ADJUST FOR A —F
11D 39 NAD RTS

210

ASHXB 6502

I. Name: ASHXB ASCII Hexadecimal to Binary Subroutine for
6502
II. Description: See ASHXB 8080.
1. Calling Sequence: (DEST) = Address of start of string
JSR ASHXB
[Return with (A) = value]
IV. Volatility: X register not used.

V. Notes: On return (DEST) holds address of last character stored
plus one. Continuing calls may be made to ASHXB with
returned pointer in DEST to convert a string of hexadeci-
mal values. DEST assumed to be a page 0 location speci-
fying a 16-bit address (LS byte followed by MS byte).

Loc Contents Label Operand Arguments Comments

200 A0 01 ASHXB LDY i POINT TO SECOND DIGIT
202 81 XX LDA (DEST),Y GET CHARACTER

204 20 2502 JSR CVERT CONVERT TO HEX DIGIT
207 48 PHA SAVE

208 88 DEY

209 B XX LDA (DEST),Y GET SECOND CHARACTER
208 20 2502 JSR CVERT CONVERT

20E OA ASL

20F 0A ASL

210 0A ASL

21 0A ASL ALIGN TO MS POSITION
212 852z STA TEMP1

214 68 PLA GET SECOND DIGIT

215 05277 ORA TEMPI1 MERGE DIGITS

217 48 PHA SAVE

218 A5 XX LDA DEST GET POINTER

21A 18 cLe CLEAR FOR ADD

218 69 02 ADC #2 POINT TO LASTH1

21D 85 XX STA DEST

21F 90 02 BCC NOC GO IF NO CARRY

221 E6YY INC DEST41 BUMP MS ADDRESS

223 68 NOC PLA GET VALUE

224 60 RTS RETURN

225 38 CVERT SEC SET FOR SUBTRACT

226 E9 30 SBC #3$30

228 C90A CcMP #10 TEST FOR 09

22A 3002 BMI NOAD GO OF 0--9

22C E9 07 SBC #7 A—F

22E 60 NOAD RTS RETURN TO ASHXB

211

II1.

IV.

Loc

000
001
002
004
005
006
011
013

017
020
021
022

026
027

212

BXASB 8080
Name: BXASB Binary to ASCII Binary Subroutine for 8080

. Description: This subroutine converts an 8-bit binary value to

the equivalent ASCII digits and stores the ASCII
characters in a specified 8-byte memory buffer. Re-

entrant.
Calling Sequence: (H,L) = Address of start of buffer
‘ (B) = Value
CALL BXASB

(Return with characters stored in buffer)
Volatility: All registers returned with original values except H,L.
(H,L) points to last ASCII character stored plus one.
Notes: Continuing calls may be made to BXASB with the re-
turned pointer in H,L. to convert additional binary values.

Contents Label Operand Arguments Comments

365 BXASB PUSH PSwW SAVE A

305 PUSH B SAVE B,C

oi160m MVI Cc,9 SETUP INDEX

170 MOV A,B

015 LOOP DCR C DECREMENT COUNT
312 025 000 Iz DONE GO IF DONE

006 060 Mmvi B,060 ASCIl O

027 RAL SHIFT OUT BIT

322 020 000 JNC NOC GO IF O

004 INR LOOP CHANGE TO 060
160 NOC MOV B STORE CHARACTER
043 INX M,B BUMP POINTER
303 005 000 IMP H

301 DONE poOP B RESTORE B,C

361 POP PSW RESTORE A

311 RET

BXASB 6800

I. Name: BXASB Binary to ASCII Binary Subroutine for 6800
II. Description: See BXASB 8080. Reentrant.
III. Calling Sequence: (X) = Address of start of buffer
(A) = Value
JSR BXASB
(Return with characters stored in buffer)
IV. Volatility: B accumulator saved. X register points to last ASCII
character stored plus one.
V. Notes: Continuing calls may be made to BXASB with the re-
turned pointer in X to convert additional binary values.

Loc Contents Label Operand Arguments Comments

100 37 BXASB PSHB #8 SAVE B

101 C6 08 LDAB SETUP INDEX

103 37 PSHB SAVE

104 Cé6 30 LOOP LDAB 1$30 ASCII ZERO

106 49 ROLA SHIFT BITTO C
107 2401 BCC NAD GO IF0

109 5C INCB ASCIl ONE

10A E700 NAD STAB X STORE CHARACTER
10C 08 INX POINT TO NEXT
100 33 PULB GET INDEX COUNT
10E 5A DECB DECREMENT

10F 27 03 BEQ DONE GO |F DONE

mo 37 PSHB SAVE INDEX

112 20 FO BRA LOOP CONTINUE

114 33 DONE PULB RESTORE B

115 39 RTS RETURN

213

1I.
II.

IV.

Loc

200
202
204
205
207
208
209
20A
20C
20D

210
212
214
215

219

21B
21D

214

BXASB 6502

. Name: BXASB Binary to ASCII Binary Subroutine for 6502

Description: See BXASB 8800.
Calling Sequence: (DEST) = Address of start of buffer
(A) = Value
JSR BXASB
(Return w/characters stored in buffer)
Volatility: All registers used.
Notes: On return (DEST) points to last ASCII character stored
plus one. Continuing calls may be made to BXASB with
the returned pointer in DEST to convert additional val-

ues. Location DEST assumed to be in page 0 and specify-
ing a 16-bit address (LS byte followed by MS byte).

Contents Label Operand Arguments Comments

A0 00 BXASB LDY #0 INITIALIZE INDEX

A230 LOOP LDX #$30 ASCII ZERO

0A ASL A SHIFT OUT BIT

90 01 BCC NOC GO IF C=0

E8 INX ASCII ONE

48 NOC PHA SAVE PARTIAL VALUE
8A TXA

91 XX STA (DEST),Y STORE ASCIi CHARACTER
68 PLA RESTORE PARTIAL VALUE
c8 INY

Co 08 CPY #8 TEST FOR DONE

DO FO BNE LOOP GO IF NOT DONE

A5 XX LDA DEST GET LS ADDRESS

18 CLC CLEAR CARRY FOR ADD
69 08 ADC #8 BUMP TO NEXT CHAR POS
85 XX STA DEST

90 02 BCC NOC1 GO IF NO CARRY

E6 YY INC DEST+1 CARRY TO MS ADDRESS
60 NOCI RTS RETURN

IIL

1v.

BXASD 8080

. Name: BXASD Binary to ASCII Decimal Subroutine for 8080
. Description: This subroutine converts a 16-bit double-precision

binary value to five ASCII decimal digits and stores
the result in a specified five-byte memory buffer.
Reentrant.
Calling Sequence: (D,E) = Address of start of buffer
(H,L) = Value
CALL BXASD
(Return with characters stored in buffer)
Volatility: All registers used. (H,L) points to last ASCII charac-
ter stored plus one on return.
Notes: The most significant bit in each ASCII character is set to
zero. User requirements may be different.
Continuing calls may be made to BXASD with the re-
turned pointer in H,L to convert additional decimal

values.
Contents Label Operand Arguments Comments
023 BXASD INX D
023 INX D
023 INX D
023 INX D POINT TO LS CHAR
325 PUSH D SAVE LAST POSITION
016.005 Mvi c,5 SETUP COUNT
006 012 MVI B,10 DIVISOR
315 XXX XXX* LOOP CALL UNSPD DIVIDE BY 10
306 060 ADI 060 CONVERT TO ASCHI
022 STAX D STORE IN BUFFER
033 DCX D POINT TO HIGHER ORDER
015 DCR C DECREMENT COUNT
302011 000 INZ Loor GO IF NOT DONE
321 POP D
023 INX D POINT TO LAST-+H1
311 RET

215

1I.

III.

Iv.

Loc

100
102
103
104
105

108
10A
10C
10E
110
113
115
17
119
118

1E
120
122
123

125

126
127

216

BXASD 6800

Name: BXASD Binary to ASCII Decimal Subroutine for 6800
Description: This subroutine converts a 16-bit double-precision
binary value to five ASCII decimal digits and stores
the result in a specified five-byte memory buffer.
Calling Sequence: (X) = Address of start of buffer
(A,B) = Value
JSR BXASD
(Return with characters stored in buffer)
Volatility: All registers used.
Notes: The most significant bit in each ASCII character is set to
zero. User requirements may be different.
Continuing calls may be made to BXASD with the re-
turned pointer in X to convert additional decimal values.

Contents Label Operand Arguments Comments

DF XX BXASD STX TEMP1 SAVE FOR COMPARE
08 INX

08 INX

08 INX

08 INX POINT TO LAST CHAR POS
97 YY STAA DVDN STORE VALUE FOR DVD
D7 7Z STAB DVDN-+1

86 0A LDAA #10 SETUP DIVISOR

97 WW STAA DVSR

DF VV Loop STX TEMPC SAVE FOR DVD

BD XX XX* JSR UNSPD DIVIDE BY 10

DE VV LDX TEMPC RESTORE X

96 UU LDAA RMNDR GET REMAINDER

8B 30 ADAA #$30 CONVERT TO ASCII

A7 00 STAA X STORE

09 DEX POINT TO NXT HIGHER
9C XX CPX TEMP1 TEST FOR DONE

2C EE BGE LOOP GO IF NOT DONE

DE XX LDX TEMP1 RETRIEVE INDEX

08 INX

08 INX

08 INX

08 INX

08 INX POINT TO LAST PLUS 1
39 RTS RETURN

BXASD 6502

I. Name: BXASD Binary to ASCII Decimal Subroutine for 6502
II. Description: See BXASD 6800.
III. Calling Sequence: (DEST) = Address of start of buffer
(DPVAL,DPVAL+1) = Value
JSR BXASD
(Return with characters stored in buffer)
IV. Volatility: X register not used.
V. Notes: See BXASD 6800. Pointer in DEST. DEST assumed to
be in page 0 and specifying a 16-bit address (LS byte fol-
lowed by MS byte).

Loc Contents Label Operand Arguments Comments

200 A0 05 BXASD LDY #4 INDEX TO LAST POSTN
202 A5XX LDA DPVAL

204 85VV STA DVDN MS BYTE TO DIVDND
206 A5YY LDA DPVAL-+1

208 85 wWw STA DVDN-1 LS BYTE TO DVDND
20A A90A LDA #10

20C 85UV STA DVSR 10 TO DIVISOR

20E 20 XX XX* Loop JSR UNSPD DIVIDE BY 10

211 ASTT LDA RMNDR GET REMAINDER

213 18 cLe CLEAR C FOR ADD
214 6930 ADC #3$30 CONVERT TO ASCH
216 91RR STA (DEST),Y STORE ASCIl CHAR
218 88 DEY POINT TO NEXT

219 10F3 BPL Loor GO IF NOT DONE
21B A5RR LDA DEST DONE

21D 18 cLc CLEAR C FOR ADD
21E 6906 ADC #6 POINT TO LAST + 1
220 9002 BCC NOC GO IF NO CARRY
222 E6SS INC DEST+1 BUMP MS ADDRESS
224 60 NOC RTS RETURN

217

II.

I.

Iv.

V.

Loc

000
001
002
003
005
006
010
013
014
015

017
022
023
025

030
031
034
037
042
045
046
047
050
051

053
054
055
056
057
060
061

218

buffer. Reentrant.

BXASO 8080

I. Name: BXASO Binary to ASCII Octal Subroutine for 8080

Description: This subroutine converts a 16-bit double-precision
binary value to six ASCII octal digits and stores
the ASCII characters in a specified six-byte memory

Calling Sequence: (H,L) = Address of start of buffer
(B,C) = Value
CALL BXASO
(Return with characters stored in buffer)
Volatility: All registers returned with original values except H,L.
(H,L) points to last ASCII character stored plus one.
Notes: The most significant bit in each ASCII character is set to
a zero. User requirements may be different.
Continuing calls may be made to BXASO with the
pointer in H,L to convert additional octal values.

Contents

365

305

325

026 007

175

306 006
322 014 000
044

157

345

025

312 045 000
053

076 007

241

306 060

167

315052 000
315052 000
315052 000
303 016 000
341

321

301

361

3n

247

170

037

107

171

037

17

3N

Label
BXASO

NOC

LooP

DONE

SHIFT

Operand

PUSH
PUSH
PUSH
Mvi
Mov
ADI
JNC
INR
MOV
PUSH
DCR
JZ
DCX
MVi
ANA
ADI
MOV
CALL
CALL
CALL
JMP
POP
poP
pPOP
POP
RET
ANA
MoV
RAR
MOV
MOV
RAR
MOV
RET

Arguments Comments

PSW SAVE A
8 SAVE B,C
D SAVE D,E
D,7 INITIALIZE INDEX
AL
6 BUMP POINTER
NOC GO IF NO CARRY
H
LA
H SAVE LAST 41
D DECREMENT INDEX
DONE GO IF DONE
H POINT TO NEXT CHAR
A7 LOAD MASK
C GET NEXT DIGIT
060 CONVERT TO ASCII
MA STORE
SHIFT
SHIFT
SHIFT
LOOP CONTINUE
H POINT TO NEXT
D RESTORE D,E
B RESTORE B,C
PSW RESTORE A
A ZERO CARRY
AB FOR SHIFT
SHIFT B,C RIGHT
BA
AC
C.A

1I.

III.

IV.

BXASH 8080

Name: BXASH Binary to ASCII Hexadecimal Subroutine for
8080
Description: This subroutine converts an 8-bit binary value to
two ASCII hexadecimal digits and stores the ASCII
characters in a specified two-byte memory buffer.
Calling Sequence: (H,L) = Address of start of buffer
(B) = Value
CALL BXASH
(Return with characters stored in buffer)
Volatility: All registers returned with original values except H,L.
(H,L) points to last ASCII character stored plus one.
Notes: Continuing calls may be made to BXASH with the re-
turned pointer in H,L to convert additional binary values
to hexadecimal.

Contents Label Operand Arguments Comments

365 BXASH PUSH PSW SAVE A

305 PUSH B SAVE B,C

076 017 Mvi A017 MASK

240 ANA B GET 2ND DIGIT
365 PUSH PSW

170 Mmov AB

017 RRC

017 RRC

017 RRC

017 RRC SHIFT RIGHT 4
346 017 ANI 017 GET FIRST DIGIT
315 033 000 CALL CVERT CONVERT

167 Mov M,A STORE

043 INX H POINT TO NEXT
361 POP PSW RETRIEVE 2ND DIGIT
315 033 000 CALL CVERT CONVERT

167 MoV MA STORE

043 INX H FOR RETURN

301 POP B RESTORE B,C

361 POP PSW RESTORE A

311 RET

376 012 CVERT CPi 10 TEST FOR A-F
372 042 000 m NAD GO IF NO ADJUST
306 007 ADI 7

306 060 NAD ADI 060 CONVERT TO ASCII
311 RET

219

I

II.
IIIL

Iv.

V.

Loc

100
101
102
104

106
107
108
109

10C
10E
10F
110

113
114
115
nz

118

11D
11F

220

BXASH 6800

Name: BXASH Binary to ASCII Hexadecimal Subroutine for
6800
Description: See BXASH 8080. Reentrant.
Calling Sequence: (X) = Address of start of buffer
(A) = Value
JSR BXASH
(Return with characters stored in buffer)
Volatility: B accumulator not used. (X) points to the last ASCII
character stored plus one.
Notes: Continuing calls may be made to BXASH with the re-
turned pointer in X to convert additional binary values to

hexadecimal.
Contents Label Operand Arguments Comments
37 BXASH PSHB SAVE B
16 TAB
8D 11 BSR CVERT CONVERT TO ASCIi
36 PSHA SAVE CHARACTER
17 TBA
44 LSRA
44 LSRA
44 LSRA
44 LSRA ALIGN FOR CONVERT
8D 09 BSR CVERT CONVERT TO ASCII
A7 00 STAA X FIRST CHARACTER
32 PULA
08 INX BUMP TO NEXT BYTE
A7 00 STAA X SECOND CHARACTER
08 INX BUMP FOR RETURN
33 PULB RESTORE B
39 RTS RETURN
84 OF CVERT ANDA HS$F GET0—15
81 0A CMPA #10 TESTFOR 0 —9
2B 02 BMI NAD GO IFO—9
8B 07 ADDA H#7 ADJUST FOR A —F
8B 30 NAD ADDA #$30 CONVERT TO ASCII
39 RTS RETURN TO BXASH

11
III.

Iv.

Loc

200
201
202
203
204

208
20A
20C
20D
20F
212
213
215

218
21A
21C
21E

221
223
225
226

22A

BXASH 6502

6502

Description: See BXASH 8080.

. Name: BXASH Binary to ASCII Hexadecimal Subroutine for

Calling Sequence: (DEST) = Address of start of buffer

(A) = Value

JSR BXASH
(Return with characters stored in buffer)

Volatility: X register not used.

. Notes: (DEST) points to last character stored plus one on re-

turn. Continuing calls may be made to BXASH with the
returned pointer in DEST to convert additional binary
values to hexadecimal ASCII. DEST is assumed in page 0
specifying a 16-bit address (LS byte followed by MS

byte).

Contents Label Operand
48 BXASH PHA
4A LSR
4A LSR
4A LSR
4A LSR
20 21 02 JSR
A0 00 LDY
91 XX STA
68 PLA
29 OF AND
20 21 02 JSR
c8 INY
91 XX STA
A5 XX LDA
18 CLC
69 02 ADC
85 XX STA
90 02 BCC
E6 YY INC
60 NOC RTS
C9 0A CVERT CMP
30 03 BMI
18 cLc
69 07 ADC
69 30 NOAD ADC
60 RTS

Arguments Comments

>>>>

CVERT
#O
(DEST),Y

IHtF
CVERT

(DEST),Y
DEST

#2
DEST
NOC
DEST-H1

#10
NOAD

#7
#3$30

SAVE TWO DIGITS
GET MS DIGIT

CONVERT TO ASCII

STORE FIRST CHAR
RESTORE DIGITS
GET LS DIGIT
CONVERT TO ASCIl

STORE SECOND CHAR

CLEAR C FOR ADD
POINT TO NEXT POSTN

GO IF NO CARRY
BUMP MS ADDRESS
RETURN

TESTFOR 0 —9
GO IF0—9
CLEAR C FOR ADD

CONVERT TO ASCII

221

IIL

1v.

Loc

000
001
002
003
004
005
006

222

MVDAT 8080
Name: MVDAT Move Data Subroutine for the 8080

. Description: This subroutine moves a block of data from one

area of memory to another. Reentrant.
Calling Sequence: (B) = Number of bytes to move
(D,E) = Address of source block
(H,L) = Address of destination block
Volatiliry: Registers A, B, D, E, and H,L are not restored to their
original values. (D,E) points to the last source byte
moved plus one. (H,L) points to the last destination
address plus one.
Notes: The two memory blocks must be nonoverlapping. A num-
ber of 0 is considered 256 bytes.

Contents Label Operand Arguments Comments

032 MVDAT LDAX D GET SOURCE BYTE

167 MoV MA MOVE TO DESTINATION
005 DCR B DECREMENT INDEX

310 RZ B GO IF DONE

043 INX H BUMP DESTINATION PNTR
023 INX D BUMP SOURCE PNTR

303 000 000 JMP MVDAT CONTINUE

IIL.

Loc

100
102
104
106
108
109
10B
10D
10E

12
13
115
117

MVDAT 6800

. Name: MVDAT Move Data Subroutine for 6300
. Description: This subroutine moves a block of data from one

area of memory to another. Not reentrant.
Calling Sequence: (A) = Number of bytes to move
(SRCE) = Address of source block
(DEST) = Address of destination block
JSR MVDAT
(Return with data moved)
Volatility: All registers used.
Notes: The two memory blocks must be nonoverlapping. Loca-
tions SRCE and DEST are assumed in page 0 at locations
XX and YY, respectively. A count of O is considered 256.

Contents Label Operand Arguments Comments

DE XX MVDAT LDX SRCE SOURCE POINTER

E6 00 LDAB X GET SOURCE BYTE
DE YY LbX DEST DESTINATION PNTR
E7 00 STAB X STORE BYTE

4A DECA DECREMENT #

27 0C BEQ DONE GO IF DONE

DE XX LDX SRCE BUMP SOURCE POINTER
08 INX

DF XX STX SRCE

DE YY LDX DEST BUMP DEST POINTER
08 INX

DF YY STX DEST

20 E9 BRA MVDAT CONTINUE

39 DONE RTS RETURN

223

III.

Iv.

V.

Loc
200

203
205
207
209

224

MVDAT 6502
Name: MVDAT Move Data Subroutine for 6502

. Description: This subroutine moves a block of data from one

area of memory to another. Not reentrant.
Calling Sequence: (SRCE) = Address of source block
(DEST) = Address of destination block
(Y) = Number of bytes to move
JSR MVDAT
(Return with data moved)
Volatility: X register not used.
Notes: The two memory areas must be nonoverlapping. Loca-
tions SRCE and DEST are assumed in page O at locations
XX and YY, respectively, and specify 16-bit addresses
(LS byte followed by MS byte). A count of 0 is consid-

ered 256.
Contents Label Operand Arguments Comments
88 MVDAT DEY DECREMENT INDEX
B1 XX LDA (SRCE),Y GET SOURCE BYTE
21 YY STA (DEST),Y STORE
C0 00 CPY #O TEST FOR DONE
DO F7 BNE MVDAT GO IF NOT DONE
60 RTS RETURN

FILLD 8080

I. Name: FILLD Fill Data Subroutine for 8080
II. Description: Fills a specified block of memory with a given data

byte. Reentrant.

III. Calling Sequence: (A) = Data to be filled
(H,L) = Address of fill area
(B) = Number of bytes to fill

JSR FILLD

(Return with area filled)

IV. Volatility: All registers except H,L returned with original con-

tents.

V. Notes: Fills up to 256 bytes. A count of 0 is considered 256.

Loc Contents

000 305
001 167
002 005
003 312012000
006 043
007 303 001 000
012 301
013 311

Label

FILLD
LOOP

DONE

Operand

PUSH
MoV
DCR
JZ
INX
JMP
POP
RET

Arguments Comments

B

MA

B
DONE
H
LOOP
B

SAVE B,C

MOVE DATA
DECREMENT COUNT
GO [F DONE
INCREMENT POINTER

RESTORE B,C
RETURN

225

FILLD 6800

I. Name: FILLD Fill Data Subroutine for 6800
II. Description: Fills a specified block of memory with a given data
byte.
III. Calling Sequence: (A) = Data to be filled
(B) = Number of bytes to fill
(X) = Address of fill area
JSR FILLD
(Return with area filled)
IV. Volatility: A register is returned with its original contents.
V. Notes: Fills up to 256 bytes. A count of 0 is considered 256.

Loc Contents Label Operand Arguments Comments

100 A700 FILLD STAA X FILL

102 5A DECB DECREMENT COUNT
103 2703 BEQ DONE GO IF DONE

105 08 INX POINT TO NEXT
106 20F8 BRA FILLD CONTINUE

108 39 DONE RTS RETURN

226

FILLD 6502

I. Name: FILLD Fill Data Subroutine for 6502
II. Description: Fills a specified block of memory with a given data
byte.
III. Calling Sequence: (A) = Data to be filled
(DEST) =Fill area
(Y) = Number of bytes to fill
IV. Volatility: The X register is returned with its original contents.
V. Notes: DEST is assumed in page O and is a 16-bit address (LS
byte followed by MS byte). A count of 0 is considered

256.
Loc Contents Label Operand Arguments Comments
200 88 FILLD DEY ADJUST Y
201 91 XX STA (DEST),Y FILL DOWN
203 DO FB BNE FILLD CONTINUE
205 60 RTS RETURN

227

III.

Loc

000
001
002
003

007
010
on
012

016
017
020
021

228

COMST 8080
Name: COMST Compare String Subroutine for 8080

. Description: This subroutine enables the comparison of two

strings of data in memory. Reentrant.
Calling Sequence: (B) = Number of bytes in strings '
(D,E) = Address of first byte of string A
(H,L) = Address of first byte of string B
CALL COMST
(Return with A<OQ if string A<string B, A=0
if string A=string B, and A>0 if string
A>string B)
Volatility: All registers restored to original contents except for A.
Notes: String may be ASCII or other data. The compare is done
with the assumption that the higher-order bytes are of
greater weight. Number of bytes may be 1 to 127.

Contents Label Operand Arguments Comments

305 COMST PUSH B SAVE B,C

325 PUSH D SAVE D,E

345 PUSH H SAVE H,L

005 CONT DCR B DECREMENT COUNT
372 016 000 JM DONE GO IF DONE

032 LDAX D GET BYTE OF STR A
226 SUB M A:B

023 INX D BUMP STRING A ADDR
043 INX H BUMP STRING B ADDR
312 003 000 iz CONT GO IF EQUAL

341 DONE POP H RESTORE H,L

321 POP D RESTORE D,E

301 POP B RESTORE B,C

3N RET RETURN

HI.

Loc

100
101

103
105
107
109
108
10D
10E
110
111

13

115

118

COMST 6800
Name: COMST Compare String Subroutine for 6800

. Description: This subroutine enables the comparison of two

strings of data in memory.
Calling Sequence: (A) = Number of bytes in string

(SRCE) = Address of first byte of string A

(DEST) = Address of first byte of string B

JSR COMST

(Return with B<O if string A<string B, B=0
if string A=string B, and B>O0 if string
A>string B)

Volatility: All registers used.

Notes: String may be ASCII or other data. The compare is done
with the assumption that higher-order bytes are of greater
weight. Count may be 1 to 127. On return SRCE and
DEST point to end of strings + 1.

Contents Label Operand Arguments Comments

4A COMST DECA DECREMENT COUNT
2B 0A BMI DONE GO IF DONE

DE XX LDX SRCE GET STRING A PNTR
E6 00 LDAB X GET NEXT BYTE

DE YY LDX DEST GET STRING B PNTR
E0 00 SUBB X A—B

27 01 BEQ LooP GO IF EQUAL

39 DONE RTS RETURN

DE XX LOOP LDX SRCE BUMP SOURCE POINTER
08 INX

DF XX STX SRCE

DEYY LDX DEST BUMP DEST POINTER
08 INX

DF YY STX DEST

20 E6 BRA COMST

229

III1.

Loc

200
202
203
204
206
207
209

20D

230

COMST 6502
Name: COMST Compare String Subroutine for 6502

. Description: This subroutine enables the comparison of two

strings of data in memory.
Calling Sequence: (X) = Number of bytes in string

(SRCE) = Address of first byte of string A

(DEST) = Address of first byte of string B

JSR COMST

(Return with A<OQ if string A<B, A=0 if
string A=string B, A>0 if string A>
string B)

Volatility: All registers used.

Notes: String may be ASCII or other data. The compare is done
with the assumption that higher-order bytes are of greater
weight. Count may be 1 to 127. SRCE and DEST as-
sumed to page O and specifying 16-bit addresses (LS byte

followed by MS bytes).
Contents Label Operand Arguments Comments
AO FF COMST LDY HFF
c8 LOOP INY BUMP INDEX
CA DEX DECREMENT COUNT
30 07 BM!I DONE
38 SEC SET CARRY FOR SUBT
B1 XX LDA (SRCE),Y GET SOURCE BYTE
F1 YY SBC (DEST),Y SOURCE—DEST
FOF5 BEQ LOOP GO IF NOT DONE
60 DONE RTS GO IF DONE

II1.

Iv.

Loc

000
001
004
005
006
007
010
012
013
014
017
022

SRTAB 8080

Name: SRTAB Search Table Subroutine for 8080

Description: This subroutine searches a table of N entries with M

bytes per entry for a caller-specified 8-bit key.

Calling Sequence: (A) = 8-bit key value

(H,L) = Address of table start

(B) = Number of bytes per entry

(C) = Number of entries in table

CALL SRTAB

[Return with H,L pointing to entry if found,
otherwise (H,L)=-1].

Volatility: All registers returned with original values except for

H,L and C. C is the current entry count.

Notes: If the table contains more than one entry that matches
the key, another call may immediately be made to SRTAB
after recording the position of the previous entry without
reinitializing parameters.

Table may be 1 to 127 entries.

Contents Label Operand Arguments Comments

015 SRTAB DCR C DECREMENT ENTRY CNT
372 017 000 JM NFND GO IF DONE — NOT FND
276 cmp M COMPARE ENTRY

310 RZ GO IF FOUND

305 PUSH B SAVE B,C

110 Mov c,B NUMBER OF BYTES
006-000 MV B,O

o1l DAD B BUMP POINTER

301 pOP B RESTORE B,C

303 000 000 IMp SRTAB CONTINUE

041 377 377 NFND LXt H,—1 MARK NOT FOUND

31 RET

231

III.

232

SRTAB 6800

Name: SRTAB Search Table Subroutine for 6300
Description: This subroutine searches a table of N entries with M

Calling

bytes per entry for a caller-specified 8-bit key.
Sequence: (A) = 8-bit key value
(DEST) = Address of table start
(NBYTS) = Number of bytes per entry
(NENT) = Number of entries in table
JSR SRTAB
[Return with (DEST)=address of entry if
found or —1]

Volatility: Does not use B register.
Notes: If the table contains more than one entry that matches

the key, another call may immediately be made to SRTAB
after recording the position of the previous entry without
reinitializing parameters.

Table may be 1 to 127 entries.

Contents Label Operand Arguments Comments

37 SRTAB PSHB SAVE B

7A 00 ZZ LOOP DEC NENT DECREMENT ENTRY CNT
2B 13 BMI NFND NOT FOUND

DE XX LDX DEST SETUP INDEX

Al 00 CMPA X TEST

2713 BEQ FND GO IF FND

D6 YY LDAB DEST41 LS ADDRESS

DB WW ADDB NBYTS BUMP

D7 YY STAB DEST+1 NEW ADDRESS

24 ED BCC Loop GO IF NO CARRY

7C 00 XX INC DEST CARRY TO HIGHER ORDER
20 E8 BRA LooP CONTINUE

Cé FF NFND LDAB #—1 NOT FND FLAG

D7 XX STAB DEST

D7 YY STAB DEST+1

33 FND PULB RESTORE B

39 RTS

SRTAB 6502

I. Name: SRTAB Search Table Subroutine for 6502
IL. Description: This subroutine searches a table of N entries with M
bytes per entry for a caller-specified 8-bit key.
III. Calling Sequence: (A) = 8-bit key value
(DEST) = Address of table start
(NBYTS) = Number of bytes per entry
(X) = Number of entries in table

JSR SRTAB
[Return with (DEST)=address of entry if
found, otherwise = —1]

IV. Volatility: All registers used.

V. Notes: If the table contains more than one entry that matches the
key, another call may immediately be made to SRTAB
after recording the position of the previous entry without
reinitializing parameters. Location DEST assumed in
page O specifying a 16-bit address (LS byte followed by

MS byte).
Loc Contents Label Operand Arguments Comments
200 A000 SRTAB LDY #0 INITIALIZE INDEX
202 CA LOOP DEX DECREMENT NUMBER OF
ENTRIES
203 30 0E BMI NFND GO IF AT END
205 DI XX CMP (DEST),Y COMPARE TO NEXT
207 FOl BEQ FND GO IF FOUND
209 48 PHA SAVE KEY
20A 98 TYA
208 18 cLC CLEAR CARRY FOR ADD
20C 652z ADC NBYTS ADD CURRENT # BYTES
20E A8 TAY NEXT INDEX
20F 68 PLA RESTORE KEY
210 4C0202 Jmp LOOP CONTINUE
213 A9FF NFND LDA H-1 FLAG FOR NOT FND
215 85 XX STA DEST
217 85YY STA DEST-+1
219 60 RTS
21A 48 FND PHA SAVE KEY
218 98 TYA GET INDEX
21C 18 cic CLEAR CARRY FOR ADD
21D 65 XX ADC DEST ADD LS ADDRESS
2IF 85 XX STA DEST
221 9002 BCC NoC GO IF NO CARRY
223 E6YY INC DEST+1 CARRY TO MS BYTE
225 68 NOC PLA RESTORE KEY
226 60 RTS RETURN

233

RANDM 8080

I. Name: RANDM Random Number Generator for 8080

I1. Description: Finds a pseudo-random number by multiplying the
last pseudo-random' number by 5. Only the least
significant 16 bits are saved, in effect performing a

modulus 64K operation.

Ry, 1=K R, mod 2!¢
HI. Calling Sequence: (H,L) =seed (first R,) or last random
number

CALL RANDM

[Return with (H,L) = next pseudo-random
number]
IV. Volatility: All registers returned with original contents except for
H,L.
V. Notes: Starting with an odd seed will generate at least 16K
pseudo-random numbers without a repeat of the series.

Loc Contents Label Operand Arguments Comments
000 325 RANDM PUSH D SAVE D,E
001 345 PUSH H TIMES 1

002 051 DAD H TIMES 2

003 051 DAD H TIMES 4

004 321 POP D

005 031 DAD D TIMES 5

006 321 POP D RESTORE D,E
007 31 RET RETURN

234

RANDM 6800

L. Name: RANDM Random Number Generator for 6800
II. Description: See RANDM 8080. Not reentrant.
III. Calling Sequence: (A,B) = Double-precision seed or last ran-
dom number
JSR RANDM
[Return with (A,B) = next pseudo-random
number]
IV. Volatility: All registers used.
V. Notes: See RANDM 8080.
Asterisk marks address of SHIFT subroutine.

Loc Contents Label Operand Arguments Comments

100 36 RANDM PSHA SAVE A FOR X 5

01 37 PSHB SAVE B FOR X 5

102 CEFFFE LDX #—2 SETUP FOR SHIFT
105 BD XX XX* JSR SHIFT TIMES 4

108 C4FC ANDB #IFC MAKE LOGICAL SHIFT
10A B70115 STAA TEMP1 COULD BE PAGE 0
100 32 PULA GET LS BYTE

10 1B ABA FIND LS PRODUCT
10F 16 TAB TRANSFER TO LS REG
110 32 PULA GET MS BYTE

1M1 B9OI 15 ADCA TEMP1 FIND MS PRODUCT
114 39 RTS RETURN

15 TEMP] RMB 1 TEMPORARY

235

RANDM 6502

I. Name: RANDM Random Number Generator for 6502
II. Description: See RANDM 8080. Not reentrant.
1. Calling Sequence: (MSDP,LSDP) = Double-precision seed or
last random number
JSR RANDM
[Return with (MSDP,LLSDP) = next pseudo-
random number]
IV. Volatility: All registers used.
V. Notes: See RANDM 8080.
Asterisk marks address of SHIFT subroutine.

Loc Contents Label Operand Arguments Comments

200 A5 XX RANDM LDA MSDP SAVE FOR X 1

202 48 PHA

203 A5YY LDA LSDP

205 48 PHA

206 A2FE LDX #—2 SETUP FOR SHIFT
208 20 ZZ 7Z* JSR SHIFT SHIFT LEFT TWO
208 A5YY LDA LSDP

200 29 FC AND #H$FC MAKE LOGICAL
20F 85YY STA LSDP

211 68 PLA PULL LSDP

212 18 cLc CLEAR CARRY

213 65YY ADC LSDP TIMES FIVE LS BYTE
215 85YY STA LSDP

217 68 PLA PULL MSDP

218 65 XX ADC MSDP TIMES FIVE MS BYTE
21A B85XX STA MSDP

21C 60 RTS

236

APPENDIX

A

Intel 8080 Instruction Set

Asies

LEH L [L 1 0 0 [Ylim 7 01 ajelpawwi ppy v

0l L0 06 0 0 1 Lot 110 1 H sied saisibas dog Hd0d L g vt 1t 6 0 0 1 i V 01 3etpauius ppy gy

»aels i 01 [1 1 0 i v Yum Asowasw aledwo) WdW9

ot L 0-0 0 L 0 & i $J0 3 8 g s1ed 13151631 dog adod N 0t Lt 0 1Lt 0 1 v yim Aowaw 0 WVYH0

Hoels A ot b0 1 [V ¥ Yim Alowaw 10 amisn|ax3 W YHX

01 t 0 0 0 0 0 1 1 140 9 g g sed saisibas dog 840d i c ot ¢+ 0 Nt 0 Y ylim AJowaw puy W YNY
Y2818 U0 MD1I0Q Ylim

1 t 0o 1 0o 1 { [I sbej3 pue v usnd MSd HSNd 1 o 1 L 1+ L 0 0 ¥ Woyj AoWwaw 1Ie1igng W 885

yaes] 0L L 0 t 0 0 t V woyj Alowsw 1engng W ans

I3 1 0 L 0 0 bt uo) g Y Heg saisibas ysng H HSNd N 0t Lt 0 0 0 1 ALB3 ylim y 0) AJouiaw ppy W oav

yaeis i 6 L 1L 0 0 0 0 1 v 01 Aowsw ppy Wwaav

it L0 1 0 t 0 Lot uo 3 g (Jieg Jaisibas ysng Q0 HSNd v S S S i 1 [O v yim saysibas asedwoy 1AW

yoes v $ S S 0 !t t 0t v yimaaisibas i 1vy0

i {0 t 0 0 O [uu) g g sieg saisibas ysng 8 HSNd v S S S 1 0 1 0 v uim saisiBas 3 anisnjaxg IYHX

0l t 0 0 0 i 0 0 J3W100 y2e1s 3leipawun peo? dS 1X1 ¥y $ S S o0 0 1 0t Y uum Jaisibas puy YNV
TR Hied MOLIOG YlIm

ol i 0 0 0 0 i 0 0 sa151621 ajeipaww peo HIX1 b $ S S L 1 0 0 1 v woyy sisibai 13engng 1ggs

33 0sed b S $ S 0 L 0 0 & v woyy saisibias 12engng 18ns

ol L 0 00 t 0 0 O 13151621 arerpaww peo aixi t S S S 1 0 D0 01 Al1e3 yum yf 01 J31sibas ppy 130v

B 12 s § § 0 0 0 0 1 Vv 01 1151621 ppy 1gav

o1 t 0 0 0 0 0 0 O 13151631 areipawwi peoy g1x1 o1 I 0 t 0 t I 0§ 0 Aowaw Juswasnag W HaQ

01 L1 0 0 t 0 1 nding ino ot 600 L 0o t L 0 0 Asowaw uawasiuy W UNI

o0t 1 1 0 L 1 0 1 { induy NI g 10 i 0 o a g0 0 sasiBas yuawanag 1420

i L1 1Yy v v ot 1eisay 1iSH [00 L o o0 a o0 o 13151681 Juawasuy 1YNI

/s o 0 0 0 0 I 1 i ppo Aied uo uimay 0dt 01 6 : L 0 L I 0 0 AIOWaW 31e1P3WWE BADY WIAW

.—\m 0 0 0 1 0 i 13 { usAa >:ma uo wmay w&x I3] i i a a a 0 0 18151631 m_m_ﬁwEE_ ELUTTY IIANW

/s 6 0 0 t Ut 1o SNUIW uo WINdY WY L 0 i1 0t 1 L0 ey 17H

1E/5 0 0 0 0 t i L 3aisod uo uinjay dy i 0 1 {1 0 0 a 10 1a15ibas 01 Asowaw anoy WIAOW

LS 0 2 0 0 0 0 I 1 032 0U UO WINI3Y ZNY ¢ S S S 0 I 10 Asowauw 0 13151631 RO 1 'W ADW

11/ 00 0 I 0 0 (R 0132 UO WINaY Y g S §$ S g0 g @ 1 0 Jjaisibas o1 saisibay anopy ZUAQW

s3j2A) Og g 2g €9 Yg Sg 9% <g uondiIsag Juowauly $319A] Oy g %g g Ya S0 % ‘g uonduasag Iwowauy

1Z1M01) 11]8P0J uoRINASU} 1Z142013 {1]8p0] voNdNIIsU|

238

LPLacw

R T T NV PP

Pww22e

£l
£l

ot

T T e e OO OO e e e O O - —

COOODO @ e e e e - - O

e e e R R e - =T T i ey

=3

P T OO0 OO0 - D OO -0 O

CrOO "0~ O -D O~ OO OO - — DO . -

o

i T S G

e e e e e R N R R R N N Ry

R e e e e = T R o — T Py

'sBeyjy uoilipuoo uo 1uapuadap sa19A2 U0i1oNJISUl A1EDIPUI {LL/G) ‘sawn 312A0 ajqissod omy 2
WV oLLL — AJOWaN OLL ~ 7 1OL — H 00L - 3 110 — a0l0—D100—8000—-sSS+40Qaa 't

uonesado-op

wdnuaiun ajgesig
sidnisalug ajqeuy

1931p 7 R H peoq

1984ip 1 B H 3015

v isnlpe jpwnag

Asses yuawajdwoy

Alied jag

¥ wawajdwoy

1a1ui0d ¥3els Juawaidag
7 B H wawanag

33 @ ivawaidag

J % g luawanag

Jajuiod yoels Juawaliuy
siaisibas 7 g H Juawasug
siasifas 3 g @ 1uawanu|
sia1sibar 9 g g lwawasau|
1984pul y peoY

13841put y peoy

12811put yf 31015

138iput y 31015

7 B H o131u0d yde1s ppy
TRHOTRHPPY
TRHOI3IRQPPY

T8 HOI)RBEPPY
J8unod wesboid o1 g
s1uiod RIS 01} g |
78 H yoeis jo doy sbueyaxy
ssaisifay

178 H 3R abueyixy
1381p v peoy

12341p yf 31015

$ae1s 440

sbej4 pue y dog

dON

1a

13
QTHY
QTHS
vva
JIWI
318
VWD
dS$ X3a
H X30
0 x30
8 X230
dS XNI
HXNI
XNt
g XNI
axXvai
8Xval
aXVLS
8XVIS
ds ava
Havo
gavao
gava
THOd
THdS
THLX

gHIX
val
vis

MSd d0d

A e R e R - T R e R R =]

OO - —

=]

e

) © @

DODODOD DD e e -

B = e R

R R == IE I =

- -

D DO - QOO - - OO~ OO —

—_—— @ e

DOODD = m —DODOD = =D

——-oooo

-——oooo

~——ocooo

Ai1e3 0U U0 uIntay

Asiea uo uimay

winjay

PPo Ajed uo jjeg

uaAa Alued uo ey

SnUIW uo [[e]

anisod uo jjeg

032 0 UO jjeg

0137 U0 e

Aused ou uo g

Ase3 uo jjeg

{EUOIIPUOIUD (8]

ppo Aysed uo dwinp

uaAa Ajued uo dwng

snuiw uo dwnp

aatisad vo dwnp

0132 ou uo dwnp

0137 uo dwnp

Aises ou uo dwnp

Aired uo dwnp
(euonipuoaun dwnp

Asted

ybnosys 1ybu v areioy
Ausea ybnouyi 1j9) v aleloy
b1y aleloy

43l v 3ieloy

¥ yiim alepawwn azedwog
Y Yhm slerpatw g

v

YHM 3leipawwt 1) BAISNIX]
V Yim ajelpawwi puy
MOLIOG Ylim

Y Wouy Bleipawwi J3engng
¥ Woyy ajeipawwi 13enqng

‘S3LON

INH
a4
134

ELK]

vy
vy
Jdy
214
143
140

[1:D ¢
INV

188
Ins

Courtesy Intel Corp.

239

e —

APPENDIX

B

Motorola MC6800
Instruction Set

ololoje|e]e dS—1-dS'dSw-8 | 1 v (g 8HSd

olelelojo]e dS—t-dsdSw-v | | v gg YHSd eleq ysng

o |l|l|e]e 8- W+8 € v vilz 9 vilz £ vo|t 7 ¥3 avyo

o4\l ele Ve WY € v v8 7z S vwviz € VvelZ ¢ V8 YvHO anisnju "1

oiylijllele 8- W € v 84)Z 6 3937 £ 90{r 7 W 8val

elllifllele V- W € v 98|z § gv|z ¢ 96|z ¢ 98 vval Njway peoy

L OEIL g--1+8 11 ¢ 3§ 8INI

ORI Y-l+Y | L 7 3t YONI

o @” jje|e Wel+W € 9 JLj7 ¢t 99 INI U3WaIIu|

eid|lii|ele 8- N®8 € v 84|C G 83|¢ ¢ 80|z ¢ 8 g403

eidll|lie]e V- WOV € v B8|CZ G 8v|Z £ 8|7 ¢ 88 Y403 HO BAISN|IXY

eipilil]ele 8-1-8 |1 7 v§ 8330

eiviiil|ele vel-V | 1 7 v v330

eiviiii|e]e Wel-W € 9 YLz L V8 230 1uauiaiag
1eunog gJg o

@” m ﬂ ole Sia1oerey)d (JJ 4§ 0 PPY >hm—:m SHaAu0] i 4 6l vvaQ <.~m=.n< jewdsg

QO|il1lels g-8-00] 1 ¢ 0§ 893N

@QDli|1]e|e vev-00] 1 2 0 vI3N (aieban)

QOit|1|e|e W- W - 00 € 9 oLjz ¢ 08 93N 5,7 uswaduwiog

Sigitji]ele g~-8 |1 7 €5 awos

Sidilji|e]le ve-¥ |1 7 ¢t Y0

Sld{i|i|e|e wWe W € § gLz L €3 woo 5,1 wswiapduio]

Tyt ele a-v {1 oz i ve) snpudy aseduiod

Tit]ifi|e]e w-8 € v i4]z § 13j¢ € 10)z T 13 843

tii]ifi|ele W-Y € v 18]z 6 wvlz ¢ 16|z ¢ I8 YdWd aedwog

yjy|S|dje|e 8-00 [L ¢ 4§ 8410

Yly|S|dle|e V00 | Lz 4y vH10

Yi|S|d|e|e w- 00 € 9 4|2 ¢ 49 ¥13 sea)

eid|l|l|e]|e w-g € v S4|¢ § s3Iz € sojz ¢ 89 4118

oiy|l|l|ele W-v € p 58]z § SY|z € S6{¢ ¢ S8 v1iig 1531 1g

eltlilllefe 8- W8 € v vdlz § v3ijz € vQ|Z T ¥) 20NY

ely|l|l]e]e Ve W-v € v v8|C S vV |Z € vE|Z T 18 vaNy puy

Plilifi]eld 8- 3+W+8 € v 64{Z § 63|C £ BO{Z T B 800V

Plijtitelt V- J+W+Y € v 68{C G Bv|Z £ 66|C I 68 viav Ai1e3 yim ppy

L e v-8+V | I 7 8l vay SOy PPy

i el 8- W+g € v 84z S5 83|¢7 ¢ solz z 83 00v

liprfijelt V- W+Y € v 89z § 8vyz ¢ 8z ¢ 88 vaov ppY

alalzinl i (5321003 03 1321 = ~ d0|= ~ dof= ~ d0|= ~ d0|= ~ d0 |JINOWINW SNO!LYHIO

oft]zlelv]s sjaqey aisibas f1y) a3ndwi anix3 X3aNi 133410 aIWmI

‘934 3009 "ANOD NOILVH3IJO JILIWHLIHY/NYIT008 S300W INISSIHAAY

SNOILONHLSNI AHOWIW ANV HOLVYINNNDIVY — € 378V1

242

paajyloN e
asiMIBLL0 paseajd ‘annl 11188 pue 153) N
shempy 135 S Buissaippe 031741 10) UWNOD Byl ur PAPNIIW ale SUONINIISU 3POwW buissaippe J0i8INWAIIY - 3l0N
shempy 1asay H
1 ng woij Aney o) iA1U10g §IRIS 3y 01 pajwiod uoiedot Alowaw jo siualuo) dSpy
wawddwod 5,7 ‘Mmojang A ‘0137 - 31Ag 090 ‘ONY uesjoog .
0137 Z ‘0197 - ng 0 SNy anawyiny -
ing ubis) aniefay N MO TNTIT . Siyg anaugly +
ysew Jdnsssiug | W10 Judwa dw o] n ‘salAg weiboug 4o sagquingy =
£ ng woiy Aued-jey H ‘Y0 amsnyIx3 ueajoog ® 31347 NI 10 Jaquing ~
‘Y0 amsnpu| ueajoog + ‘{jewidapexay) apoJ uoiesadg 40
‘STOBWAS 3003 NOILIGNOD R ERER]
JIN|Z|NjT]H
44 oo 00-8 ¢ as 8181
ERE] ole 00 - v z av vislL
ERR-] e 00 - w € 9 0c4y¢ « 09 1S1 Snuty 10 087 "saf
ey oo v- 8 [ANNAt val
e Y (i eio g. v z 91 av i SIWTY Jdjsues |
Prrl ole g- 3-Ww-9g € v 4|7 S 3z £ wWlz t 20 808S
PlEgi ®le v-3-W-V € v 8i1¢ S Iv|Z ¢t |t T 8 va8s Asie] quan nqng
Titli]i]ele v-8 v Z 0l vas Sy engng
Pli]ifi|e|e g- W 9 € v 0412 S 03i¢ ¢ 0ajz ¢ 03 8ans
Piifigije]e v-w v € v 08|7 S Ooviz ¢ 06}z Z 08 vans 1aeqng
el jli|ele W- g € § 417 9 (317 v (0 8vis
eld|l|i|e]|e w- v € § (87 9 (v|Z v (b YYiS Nudy 301§
1 @]iid]e]e 3 0 19 g [T 8ys1
1@ i d|e]e 0 - OIIITm-0 v [T vys1
HOBEIEIN - W € 9 vz L 4§17 B0 by s
@i l]e]e 3 o 19 g (A gusy
1®|1|1]e]e DfnﬂHDuDET 7 vHSY
L@|1]i]e]e - [€ 9 e ¢ 19 ¥sv
@)t]i]e]e 09 19) g 7 8 81Sv
1®|1]1]e]e 0 -0 1D ~ O v z 8y v1sY
P@t]1]e]e - W € 9 8|z t 89 sy INBWYIIY 1T HIYS
L@l |i|efe 09 - (9) 8 z 95 9408
e EA ¢
@i]e|e W € 9 9z ¢ 99 L] whiy alejoy
1Dt]|e]e 09 (4 9 8 7 6% 8304
HO@jt]i]ele W € 9 6|7 (89 104 Ha1 aejoy
ejelelajo]e §--dSW 'gS -t +dS |2 81nd
olefeja]o]o Vo dSWgs - 1+ dS vz vind eieQ ind

Courtesy Motorola Semiconductor Products, Inc.

243

olojeje oo X< 1+dS Llyjoe XSl Bay xpuj « Hug Hoerg
elojoje oo dS—1-X L v|se SX1 ug ¥2e3§ « Bay xpuj
ot ®le|e {1+ W)« 1dS "W « Hds €19 482 | Ly4v|C |G |46 SIS Jiud §3elg 81015
et ®le|e L+ W)= TX W Hx €19 44|z |43z 6|40 X18 Bay xapuj a101g
ot |t|®lo]|e Tds« (L+ W) 'Hds < W gl6l3a|e|9|av|e|v|3s|e |c|38 sa1 nug yoeig peoy
o|t|t|®le|e X (1L+ W) HX < el 6|3d|el9j33|e¢|vi3aje |c|3 Xa1 Bay xapuj peo
oloole oo dS< 1 +dS L v|le SNI Aug %381§ Juaiiaiuy
elo|i|e oo X« 1+X L|v|80 XN Gay xapuj juswaiou]
eloojsle|o dS< L~ dS L v ve $30 fug Roeig Juawaloeg
elo|t|oo]e X< 1-X Ly |60 X3a Bay xapu) uswaizag
e D t|D|e|e b+ W) = X W - HY €16(08|z|9|0v|z|v|o6|€E |€|a8 Xd2 Bay xapu| aseduioy
3|A|2Z|N|1|H| NOILYYIJO JILIWHLIHY/NYIT008 | # | ~ |dO|# | ~ | dO|# |~]|d0|# |~ |dO|# |~ |d0 | JINOWINW SNOILYHY3IJO HILNIOd
oft|ejelv|s a3rtdwt aNiX3 X3aN1 193410 LN

934 3003 "GNOI NOLLYHI40 JILIWHLIHY/NYIT008

SNOILONYLSNI NOILVINdINVIN XOVLS ANV H3LSID3H X3ANI — ¥ 378VvL

Courtesy Motorola Semiconductor Products, Inc.

244

EERER(DIE L] 6]3¢ M wdnualuy ioj Hem
el o e | e |@ suonesadQ |e1dadg aag L1z o4 IMS 1dnuslu] asemijog
ejo |0 e |0 o L1 5]6¢ Siy aunnoJqng Wolty4 may

IR E: ILH wdnusluf wos4 uinlay
ejo® e |o o |o Alug "nug “fioug saduenpy Lic|co dON uonessdp oy
ej® |® (o e |o M €161(08)C |8 |av dsr auninosgng oy dwnp
® @ |® 0 o @ suoliesad jeroadg aag el1e {301 v |39 dWr dwnp
e|® |0 |0 e |0 ~ Z 8108 4sg aunnoigag o0 yaueig
e | © |® | |® | @ 0=N 21V v 149 snid §i yaueag
elo|e |0 |0 o 1=A | v |6C SA8 18 MOJHIBAQ §| Youelg
oo e |® o |0 0=A v |82 NG 183[] MOJIBAQ §| Yiuesg
o/e e | |9 o 0=2 v |9 3INSG 0137 [enb3 10 J| ydueig
o/e e 0o |0 L=N ¢ | v |8 g SNUIW ji youesg
o|o e e o |0 I=A®N ¢ vat 118 013z > 4} Yaueig
oo |0 o 0 |0 L=2+3 [N AR T4 $18 8leg 1 Jamoq 4| yauelg
e 0 |e o |0 e L={A@®N+2Z ¢l v |4 319 0487 = §f Youesg
ei® o o o o 0=2+3 [A 44 1HE Jaybiy J| youeag
oo |© /06 |0 0=(AN®N)+Z ¢ v |3 198 0487 < §] Yaueig
e/o e o /0 e 0=A@®N ¢l v 398 0187 < 4| Youesg
e/e |0 06 0 e L=Z [IR A Y 03g 0137 = §| Yduesg
e/ ®|® 0o 8 o L=3 ¢ v |8C $39 135 Aueg 4 youesg
e/ e e o 0 e 0=3 v e 308 lea|5 Aueg y| yaueig
elo 0o /o 0 o auoN ¢l vioe vdd shemiy youesg
JIAZ N |H 1831 HINVHE # | ~|dO|# |~ {dO | # |~ |dO|# |~ |dO JINOWINW SNOILYH3do
0 Z1E b |S§ aznrndni anNix3 X3ant JAILYI3Y

3
'934 3003 "aNO07

SNOILONYLSNI HONVHE ANV dJANT — S 3118V1

245

Courtesy Motorola Semiconductor Products, Inc.

'y 1018JNWNIIY JO S1UaIU0I 8y} 01 Buipiodse jag ()
'81€)S JIBM 3y} }1X3 0} pannbal st ydniiaju) a|gexsely-uo e ‘38s Ajsnoiaard)| 'sinaso Jdnuaiul uaym 18§} ug)

(suonelad) [e13adg 8a5) “yaels wouy saisibay apoy uonipucy

{1 = G| 11g) (0192 uBy} SS3] }jnsay

{S31AQ SV J0 UDNIRAIGNS WD) MOJJIBA0 JuBWAdW0I S,

i1 = 1Aq (Si) uedyrubis 1sow Jo yig ubig

*PawNaI0 Sey 1y1ys 1314 JE@N O 1nsas o) [enba Jag

£U0nN38xa 01 J01sd | {1110 = puessdQ

{uonnasaxa 01 1011d gpOE00QL = puesadg

(185 Ajsnotnaid ji paieals 10N ¢auiu ueyl sateasf saloeieyy gog Jueaniubis Jsow Jo anjea jewiaag
¢00000000 = ¥nsaY

400000001 = 1nsay

4

13
peo] v) 01
asal (N uA) 6
8L (ANG) 8
3L (N ug) L
asap (AVE) 9
sl (Aug) §
asap (A uE) ¥
3L (Jug) €
aseL (3 ug) [4
asap (A uE) l

(3SIMJIBYI0 Palead pue anay st 1sa) J1 13s 1g)

‘S3LON H3151934 3000 NOILIONOD

‘034 3002 "aNOD

ofefelofe]e V< 422 LTz vdl V WY « ¥39

@ ERIRER L9 vl 439 « ¥ 3wy
s |S|eje|e]e A<l Ljz|90 A3S MOJJ1800 135
o|e|elels|e <1 L] z]|40 138 Hse 1dnusatul 1eg
S|e elole|e Je1 Ljz|ao 238 Ause3 1ag
o|d|le|loiele A<D t]z|vo A9 MO1800 1233
ojo|elolule 1<0 L]z |30 9 HSeW 1dnusalu} Jeai)
dle|oelo |0 e 3<0 L{¢|a0 319 Auie] teagy
3A|Z| N|1|H|NGILVYIJONVIT008 | # | ~ |dO| JINOWINW SNOILVH3d0
ojtlzie|v]|s a3ndwi

SNOILONYLSNI NOILVYINDINVIN H31S1D93H 300D NOILIGNOD — 9 3718V1

Courtesy Motorola Semiconductor Products, Inc.

246

APPENDIX

C

MOS Technology MCS6502
Instruction Set

R ceiviesfe{v(oslz|v|selz|s|i8]z |9 1V zietevle|viavjz |2) vewl Va1
. e} 9foz aNSawnriz 63 »sf ST
- - - - - - REREL €] e oy DOTMINOL4WNT] d W
- - - - r 7 t]z7]80 A=+ 1+Al ANI
B 11283 X+ t+x] XNI
e €feladgfz]e]es zls|93fe|9fam W=1+w] ONI
R c|v|es|e v jasfzivjssfzisiisfz|alip ziejsele|v|aviz |z ! v+-wnAvl 403
e = = op 88 A=i-Al A3Q
- - - = %] X+ 1-x{ X3a
- -t € |t [30fz |9 isg AL EERE: wei-w| 0230
- - - r r 7 Zyelwje| viod zi |60 w-Al Ad WJ
- - o z|elvafe|vioalz| z|ea w-x| Xd2
e S Elyjedl e |viocalz [visalz s |ta} z]9 |t Zle|soje v iadjezie 4 W-v| d WD
e - - - - - 1| zis8g A8l ATD
- -8 - - - vzes 1+~0] 119
e - - - - 1] z|sa a-9j Q12
- - -9 - - tizist o=e6f 070
JE zlziee i @ [=ANOHONVHB]| S AB
J zlzlos) B=ANOHONVHE| O A8
- e e e - M t] |00 [IRCFELSE S BN -]
- - - - - - izl M @ p=NNOHONVHE| 148
- e - - e - 2|z lea : ! 0=ZNOHONVYB| I N8
- - - - - - zjziee L=NNOHONvHE| | W 8
W - W z|e|wfejv (o wvv| Lig
i 2l zles i 1=ZNOHONvEE| 0 3 8
- - - - -2 z| z o8 1=DNOHONVEE| S0 8
- - - - - - z|z o6 @ B=INOHONWEE| 33 @
R ! elefafjelojo z |ve| z| s|sef €| 9|38 [C—) isv
- - - =t elvifeclefvijoelz|vjse|z|s|iele]ofiz zlelszlef vlazf z| z|ez)t V+AVY| ONVY
S S Elviecle v joebz)v|seizisifz)olie zlelsoje|viaof Zfz|egi» v-Owtsv| DQV
A Gt D 2 N| #[N|dO| #{N|dO] #{N|dO| #|N |dO| #| N|dO| #| N[O} #| N|qOf #| N [do| #| NidO| #| N |do] #{ N|dof #| N[do] # [N |do] NOILYH3JO JNONINN
S3002 NOILIGNOD | A'39Vd'2| 1D3uiaNi | 3AlvIaE| A'sav x'sav | x'3ava'z2 | A'(GND | (X'OND | o3riem | wndav | 39vdows3z|ainiosav | atvioame SNOILLONYLSNI

siuawaiinbay Aiowsayy ‘awi) uonndaxy ‘s300J 40 — L3S NOILINYLSNI

248

9118 aHONIW TN 8O A H3LNIOd YOVLS ¥4 ABOWIW W L7NS34 Y37 HOJ AIUDIHD 38 LSNW BOLYINWNIOY 2 “
1118 AHOW Iw »F, anv v 553800V 3A1103443 H3d AHOWIW W ‘QITVANIS1 9714 2 IGOW TYWIDIT NI J) v nl.. N
Q313100W LON - 1ovei8ns -~ HOLYINWADIY ‘MOBHOE = LON AHHYD (E)] S
‘39Vd LN3IH 34410 OL SEHNID0 HONVHS 41 ,.N.. OL Z aav [=}
S31A8 ON # aysgow - v« A XION A 39Vd IWVS OL SHNID0 HONVHE 41 ,N. OL L dAY {2) s
S3TDA2 ON N ¥O IAISNIDX I Rl X X30N1 X Q3SSOHD S| AYONNOE 39Vd 41 .N.. OL i QY) .m
BEAES Ve Al VAL]
" _ “ A _ R sex} sx1 =
! Pt [2}
o H H j 1] z)vs ve+x VX1 o
.o, " | _ . o I 1]z |ve Xx+s| xs1 W
ror ., i * ; 1 [NEAE: AVl AV L 2
s ' I T 1 NEREA i x+ vl Xyl .m
' X i v v6 i mms_n v |28 w=al ALS %
-l i | ' : B | €losf e viag Wex] X1S
. ; | 3 €lsas| z v ss|cio w6zl i 2| c|s8|c|v|og wevl vis
' L i i tjpzese _ : t<- il 13§
. I i h DI ! a-1f a3s
- _ . W ' “ (AR ! J=1if 238
r ror “ M €, €ivi04 N.c S4[25 i3]z 8!l e s3je|viazjz|e) V2 W-vi 288§
- b ! : i . ; t{9]es BNSNULY 2 By g § 4 y
(Q3¥01538) i i .)]9 ep AINUNYLE (1 Bigas) 4 gy
I EN “ I ciclile]ola L t]zve| 2| s)99 0 | you
e ol j el cfacfzla o ! ! vz |vele|slaef] 9]3] CErE_—a%| 10w
1035015341 i w ! : : V| viez i de—sW sei.s| 9414
- IR) . I i ve—in Seis| vid
- - - | ; i : tic|8e ; Se—1-S We—d| dHJ
FE |) : IREANT S*—1-S SWev]| VHd4
oo crvlstlelviaf e v sl z] 50 Z|9le Cie|soleiviae z| zj60 Y+ WAY| YV HO
- - - - . L1z |vs NOILVE3dOON| d O N
- - - s tre €lefas zf 9o viezivd z[siov] £ 9|3y Jeg——et | S
- - - ror e|viogf z]vive zi e|w| €| vlovl 2| zlevly A<W|l AGT
- - - - s rlZiviem €l vf3s Tiejavie|viaviz|zzvfm X+ W Xa1
AaG 12 2N szouzmoxz_uouzaoazmouzaouZuouzaoaz%uzaouzmouz%az.wo NOILY8340 JINONINN
$3000 NOILIONOD | A'39va'2 | 1336101 | 3AivI3E | 4 sev X'sav_ | x'3ova2| A'laN | (XONN | a3rami | mnoav | 2ovaou3z| aintosey ILVI0INm

OIN=1 JAILYOIN
INHL=1 MOT3H3A0 .S, H431LNIOd XOVLS ﬁ S m | ~
24 i 8
P — 5
GNVIWWOD 48 .Od.. ¥3LNNOD WvHOOHd _ 194 _ HOd
INYL =1 ICOW IVWIO3Q ~+— 7 7 A g
318vSIQ = L 378vSIQ DY X Y3151934 X3ANI * % M
0H3Z 17NS3Y = | 043z 7 7
3NHL =1L AHHVD A Y31S193d X3ANI ﬂ A _
7 3
v HOLY 1NWN3OV # v _ﬁ
| . ,
ode D3W SNLVLS HOSSIOO0Hd _ 7]z _ | _ a " g _ M A _ N w
ra L

1300W ININWNYHI0dd

Courtesy MOS Technology, Inc.

SJ11SI43LIVHVYHI NOWIWOI

250"

A

Accumulator addressing, 53
Accumulator, 6800, 50
Addition
and subtraction, bcd, 37-38
binary numbers, 24-25
multiple-precision numbers, 106-107
Address bus, 32
Addressing modes, microcomputer, 53-59
immediate addressing, 54-55
indexed addressing, 57
indirect addressing, 57-58
memory address instructions, 55-56
relative addressing, 56-57
short instructions, 53-54
why have different modes, 53
Advantages, bases 8 and 16, 22
Altair 8800, 14
ALU, 47-51
AND logical operation, 29
Architecture, 47-52
Arguments, passing, subroutine, 121
Arithmetic
and logical instructions, 67-68
decimal and floating-point, 155-163
converting between ASCII and bed
data, 156
decimal arithmetic, 155-156
examlples, decimal arithmetic,
-163
floating-point
addition, subtraction, multiplica-
tion, division, 159
representation, 156-159
operations, integer, 99-105
carry, 100
division methods, 101-103
examples, 103-105
flags, 100
multiplication methods, 100-101
overflow, 99
operations, mathematical, 23-29
addition of binary numbers, 24-25
carry, 27-28
fixed-length fields, 23
logical operations, 28-29
octal and hexadecimal addition and
subtraction, 28
overflow, 25, 27
signed binary notation, 23-24, 25
subtraction of binary numbers, 26-27
two’s complement representation, 24
Armed interrupts, 166
Arrays, 134
ASBXB, ASCII to binary subroutine,
202-204

ASCII code, 40
ASDXB, ASCII decimal to binary sub-
routine, 205-207

Index

ASHXB, ASCII hexadecimal to binary
subroutine, 209-211
ASOXB, ASCII octal to binary sub-
routine, 8080, 208
Assembler operations, 89
Assembly lan%uage vs. machine language,
86-
assembler operations, 89
expressions, 91
hand assembling, 88
machine language coding, 86
pseudo-operations, 8§9-91 . .
symbolic representation of instructions
and addresses, 86-87
Asynchronous 1/0 option, 77
Average instruction execution time, 46

Babbage’s folly, 12
Bases
8 and 16, advantages of, 22
other than 10, 17
Basic computer operations, 30-35
general computer operations, 30
instruction execution sequence, 33-35
1/0 operations, 32
memory operations, 32-33
microcomputer operations, 30-32
Baudot code, 38-40
Binary
and other number systems, 16-22
advantages of bases 8 and 16, 22
bases other than 10, 17
binary
components, 18
representation, 17-18, 19
converting
binary to decimal, 18-19
decimal to binary, 19
decimal system, 17
fractional representation, 19
octalzand hexadecimal conversions,
-coded decimal
arithmetic operations, 37-38
numbers, 36-37
numbers
addition of, 24-25
subtraction of, 26-27
B_searches, table operations, 132-133
1t
definition, 18
processing and manipulation, 147-154
examples, 150-154
retrieving fields of data, 147-148
storing fields of data, 148-149
testing fields, 149-150
Branch and jump instructions, 69-70
Branches, conditional, 115-116

251

Branching loops, and indexing, 113-119
conditional branches, 115-116
examples, 116-119
indexing, 115
loop operation, 113-115
loops vs. straight-line coding, 116
nested loops, 115
Bubble
memory, 60
sorts, 142-143
Buffers, 1/0, 166-167
BXASB, binary to ASCII binary sub-
routine, 212-214

BXASD, binary to ASCII decimal sub-
routine, 215-217

BXASH, binary to ASCII hexadecimal
subroutine, 219-221

BXASO, binary to ASCII octal
subroutine, 8080, 218

Cc

Carry, 27-28, 100
Charge-coupled device memory, 60
Chip, microprocessor, 13
Codes, data, 36-43
ASCIlI, 40
Baudot, 38-40
bed, 36-38
EBCDIC, 40
Gray, 41- 43
Compare and test instructions, 71-72
Computer operations, 30-35
basic, 30-35
general 30
instruction execution sequence, 33-35
1/0, 32
memory, 32-33
microcomputer, 30-32
C mputers before microcomputers, 12-13
MST, compare string subroutine, 228-

Condmonal branches, 115-116
Content addressable tables, 131-132
Converting
between ASCII and bed data, 156
binary to
decimal, 18-19
hexademmal 21
decimal to
binary, 19
octal, 20
hexadecimal to decimal, 21
octal to decimal, 21
Cost, home computer, 14
Cross-assembler, 148

D
Data .
as opposed to instructions, 32
bus, 32

codes within microcomputers, 36-43
ASCII code, 40
Baudot code, 38-40
binary coded decimal, 36-37
arithmetic operations, 37-38
EBCDIC code, 4
Gray code, 41-43
merging, list processmg, 143
moving, 92-98

direct loads and stores, 94
immediate operands, 93-94

252

Data—cont
moving
8080
MOY instructions, 94
register-to-register moves, 94
6800
index register and stack pointer
moves, 95-96
register-to-register moves, 96-97
stores and loads, 96
6502
loads and stores, 97-98
register-to-register moves, 98
-moving instructions, 66-67
pushmgna;ld pulling, stack operations,

Decimal
and floating-point arithmetic, 155-163
converting between ASCII and bed
data, 156
decimal anthmetlc 155-156
floating-point
addition, subtraction, multiplica-
tion, and division, 159
representanon, 156-159
examples, decimal arithmetic,
1 3

mode, 6502, 51
system, 17
Decrements and increments, register and
memory, 70-71
Diagnostic, 89
Direct memory access (DMA), 32
1/0, 76-77, 164
Displacement tables, 131
Division methods, 101-103
Direct loads and stores, 8080, 94
multiple-precision, 109
DMA, see Direct memory access 1/0
Double-
and multiple-precision schemes,
106-112
addition, 106-107
division, 109
examples, 110-112
multiplication, 108-109
ranges of multiple-precision
numbers, 106
subtraction, 107-108
buffering 1/0, 167
dabble, 19
ended lists, 140-141
Drivers, 1/0, 167-168

E
EBCDIC code, 40
EDVAC, 12
Effective address, 56
8080

direct loads and stores, 94
immediate operands, 93 94
mterrupt processing, 81-83
MOV instructions, 94
register-to-register moves, 94
ENIAC, 12, 30
Environment, saving the, 64, 81-82
Examples
bit proclessinsg4and manipulation,

branchi_ng, loops, and indexing,

6-119
decimal arithmetic, 159-163

Examples—cont
list processing, 144-146
integer arithmetic operations, 103-105
1/0 operations, 168-172
multiple-precision, 110-112
stack operations, 127-130
subroutines, 123-125
table operations, 135-139
Execution time, average execution, 46
Expressions, 91

F
Floating page, 56
Field, 23
Fields, data
retrieving, 147-148
storing, 148-149
testing, 149-150
FILLD, fill data subroutine, 225-227
Fixed-length
buffer, 167
fields, 23
Flag-type instructions, 72-73
Floating-point
addition, subtraction, multiplication,
division, 159
and decimal arithmetic, 155-163
converting between ASCII and bed
data, 156
decimal arithmetic, 155-156
examlples, decimal arithmetic, 159-
63

floating-point
addition, subtraction, multiplica-
tion, division, 159
representation, 156-159
representation, 156-159
Fractional representation, 22

G

Gflark, 16

Gigo, 156

Gray code, 41-43
rectangular, 41-42
reflected, 42-43

H

Half-carry, 155

Hand assembling, 88
Hash-related searches, 133-134
Holographic memory, 60

Immediate
addressing, 54-55
operands, 8080, 93.94
Implied addressing, 53
Increments and decrements, register and
memory, 70-71
Indexed addressing, 57
Index registegr and stack pointer moves,

Indexing, branches, and loops, 113-119
conditional branches, 115-116
examples, 116-119
indexing, 115
loop operation, 113-115
loops vs. straight-line coding, 116
nested loops, 115

Indirect addressing, 57-58

Inherent
addressing, 53
(implied) instruction, 33
Initialization, stack, 126
Input/output, microcomputer, 74-78
direct memory access 1/0, 76-77
parallel interfaces, 78
programmed 1/0, 74-76
serial 1/0, 77-78
special-purpose interfaces, 78
Insertion and deletion of items, list
processing, 141-142
Instruction sets, 65-73, 237-249
arithmetic '%nd logical instructions,
compare and test, 71-72
data-moving instructions, 66-67
8080, 237-239
flag-type instructions, 72-73
jumps and branches, 69-70
to subroutines, 69-70
register and memory increments and
decrements, 70-71
shifts, 68-69
6800, 241-246
6502, 247-249
special instructions, 73
Integer arithmetic operations, 99-105
carry, 100
division methods, 101-103
examples, 103-105
flags, 100
multiplication methods, 100-101
overflow, 99
Interfaces
parallel, 78
special-purpose, 78
Interrupt
action, stack operations, 127
address assignments, 62
-driven 1/0, 165-166
processing. microcomputer, 79-84
justi@cag?n for using interrupts,
9

8080 interrupt processing. 81-83
saving the environment, 81-82
6800 interrupt processing, 83
6502 interrupt processing, 83-84
1/0

addressing, 61-62

operations, 164-172
examples, 168-172
iIntCe’rrupt-driven 1/0, 165-166

buffers, 166-167

drivers, 167-168
Teletype 1/0, 165
wait-for-complete I/0, 165

J

Jacquard’s punched-card equipment, 12
Jumps and branches, 69-70
Justification for using interrupts, 79-81 :
L r
Life, microcomputer game, 80 :
Link, 120
List processing, 140-146 I
bubble sorts, 142-143
double-ended lists, 140-141
examples, 144-146
insertion and deletion of items, 141-142

253 ;

List processing—cont
merging data, 143
single-ended llsts, 140
Loads and stores
8080, 94, 95
6800, 96
6502, 97-98
Location, stack, 126
Logical
and arithmetic instructions, 67-68
operations, 28-29
AND, 29
OR, 29
XOR, 29
Loops, branching, and indexing, 113-119
conditional branches, 115-116
examples, 116-119
indexing, 115
loop operation, 113-115
loops vs. stralght—lme coding, 116
nested loops, 115

M

Machine language vs. assembly language,
assembler operations, 89
expressions, 91
hand assembling, 88
pseudo-operations, 89-91
machine language coding, 86
symbolic representation of instructions
and addresses, 86-87
Manipulation and processing, bit, 147-154
examples, 150-154
retrieving fields of data, 147-148
storing fields of data, 148-149
testing fields, 149-150
Master list, 143
Memory
address instructions, 55-56
and register increments and
decrements, 70-71
and stack operation, 60-64
interrupt address assignments, 62
I/0 addressing, 61-62
memory stack allocation, 63-64
types of memory, 61
external, 32
modules, 8080, 48-49
Merging data, list processing, 143
Microcomputer
addressing modes, 53-59
immediate addressing, 54-55
indexed addressing, 57
indirect addressing, 57-58
memory address instructions, 55-56
short instructions, 53-54
why have different modes, 53
explosion, 13-15
advent of microprocessors, 13
computers before microcomputers,

12-13

8080, 6800, and 6502 microcompres-
sors, 14

hobbyist microcomputers, 14-15

Intel

what is bemg done, 14-15
input/output, 74-78
direct memory access 1/0, 76-77

254

Microcomputer—cont

input/output
parallel interfaces, 78
programmed 1/0, 74-76
serial 1/0, 77-78
special-purpose interfaces, 78

instruction sets, 65-73
arith6metic and logical instructions,
compare and test, 71-72
data-moving instructions, 66-67
flag-type instructions, 72-73
jumps and branches, 69-70

to subroutines, 69-70
register and memory increments and
decrements, 70-71

shifts, 68-69
specnal instructions, 73

interrupt processing, 79-84
]ustnj/cat];m for using interrupts,
saving the environment, 81-82
8080 interrupt processing, 81-83
6800 interrupt processing, 83
6502 interrupt processing, 83-84

memory and stack operations, 60-64
interrupt address assignments, 62
1/0 addressing, 61-62
memory stack allocanon 63-64

. types of memory, 61

Microcomputers

built around the

8080, 48-49

hobbylst 14-15
what is being done, 14-15
Micro-mini computer, 31
Microprocessor and microcomputer
architecture, 46-52
architecture, 47-52
8080, 47-48
6800, 49-50
6502, 50-52
microcomputers built around
8080, 48-49
6800, 50
. 6502, 52
Microprocessors
advent of, 13
8080, 6800, and 6502, 14
8008, 4004, 13
Most significant bit, 24
Moving data, 92-98
8080

direct loads and stores, 94

immediate operands, 93-94

MOV instructions, 94
8(r)%gister-to-regist.er moves, 94

index register and stack pointer
moves, 95-96
register-to-register moves, 96-97
S(S)tzores and loads, 96

loads and stores, 97-98
register-to-register moves, 98
MOV instructions, 94
MPAD, multlple-precmon add sub-
routine, 196-198
MPSUB, multip]e~precision subtract sub-
routine, 199-201

Multiple-land ({guble—precision schemes,

addition, 106-107

division, 109

examples, 110-112

multiplication, 108-109

ranges of multiple-precision numbers,

6
subtraction, 107-108
Multiplication
methods, 100-101
multiple-precision numbers, 108-109
MVDAT, move data subroutine, 222-224

N

Naked Mini, 13
Napier’s Bones 12
Nested loops, 115
Notation, scientific, 157
Nova, 13

0

Object code, 89
Octal and hexadecimal addition and
subtraction, 28
One-byte addressing, 53
Operations
arithmetic, 23-29
addition of binary numbers, 24-25
carry, 27-28
fixed-length fields, 23
logical operations, 28-29
octal and hexadecimal addition and
subtraction, 28
overflow, 25, 27
signed bmary notation, 23-24, 25
subtraction of binary numbers 26-27
two’s complement representation, 24
assembler, 89
basic computer, 30-35
general, 30
mstruction execution sequence, 33-35

memory, 32-33
microcomputer, 30-32
integer arithmetic, 99-105
carry, 100
division methods, 101-103
examples, 103-105
flags, 100
multiplication methods, 101-103
overflow, 99
interrupt- dnven I/O 165-166
1/0, 164-172
buffers, 166-167
drivers, 167-168
examples, 168-172
Teletype 1/0, 165
wait-for-complete 1/0, 165
pseudo-, 89-91
stack, 126-130
examples, 127-130
interrupt action, 127
pushing and pulling data, 127
stack
initialization, 126
location, 126
overflow, 127
table, 131-139
arrays, 134
binary searches, 132-133

Operations-—cont
table
content addressable tables, 131-132
displacement tables, 131
examples, 135-139
hash-related searches, 133-134
searching for a key, 132
sequential searches, 132
ORr logical operation, 29
Overflow, 25, 27,
stack, 127

Parallel
interfaces, 78
universe, 16-17
Parity, 43
Passing arguments, subroutine, 121
PDP-8, 13
Ping-pong buffering, 167
Polling, 80
Powers-of-two conversion, 20
Priority interrupt module, 82
Processing
and manipulation, bit, 147-154
examples, 150-154
retrieving fields of data, 147-148
storing fields of data, 148-149
testing fields, 149- 150
list, 140-146
bubble sorts, 142-143
double-ended lists, 140-141
examples, 144-146 .
insertion and deletion of items,
141-142
merging data, 143
single-ended lists, 140
Program counter, 33
Programmed 1/ O 74-76, 164
Pseudo—operatlons 89-91
Pushing and pulling data, stack opera-
tions, 127

R

RANDM, random number generator
subroutine, 234-236
Ranges, multiple-precision numbers, 106
Register
and memory increments and
decrements, 70-71
-to-register moves, 94-98
Registers, savings, subroutine, 121
Relative addressmg 56-57
Retrieving fields of data, 147-148

S

Saving

registers, subroutine, 121

the environment, 64, 81-82
Scientific notation, 157
SCOMP, simple compare subroutine,

Scratchpad registers, 8080, 48
Searches

binary, 132-133

hash-related, 133-134

sequential, 132
Searching f(ir a key, table operations,

Sequential searches, table operations, 132

Serial 1/0, 77-7
Shaft encoder 42

255

SHIFT, shift subroutine, 184-186
Shift instructions, 68-69
Short instructions, 53-54

index register and stack pointer moves,

95-96
mterrupl processing, 83
register-to-register moves, 96-97
stores and loads, 96

502

interrupt processing, 83-84
loads and stores, 97-98
register-to-register moves, 98
Sign bit, 24
Signed
binary notation, 24-25
multiply routine, 101
Single-ended lists, 140
Software driver, 164
Sort, bubble, 142-143
Special
instructions, 73
-purpose interfaces, 78
gRTAB search table subroutine, 231-233
tack
operations, 31, 126-130
examples, 127-130
interrupt action, 127
pushing and pulling data, 127-130
stack
initialization, 126
location, 126
overflow, 127
pointer
8080, 48
maintenance, 122
6800, 50
-related instructions, 72
Starage, high-speed, 31
Storing fields of data, 148-149
Straight-line codlng vs. loops, 116
Subroutines, 120-125
examples, 123-125
passing arguments, 121
precanned, 183-236
reentrancy, 121-122
saving registers, 121
stack pomter mamtenance, 122
use of, 120-12

256

Subroutines—cont
vs. straight-line coding, 123
Subtraction
binary numbers, 26-27
multiple-precision numbers, 107-108
Symbolic representation of instructions
and addresses, 86-87
Symbol table, 88

T

Table operations, 131-139

arrays, 134

binary searches, 132-133

content addressable tables, 131-132

displacement tables, 131

examples, 135-139

hash-related searches 133-134

searching for a key, 132

sequential searches, 132
Teletype 1/0, 165
Test and compare instructions, 71-72
Testing fields of data, 149-150
TIME, timing loop subroutine, 187-189
Two’s complement representation, 24
Types of memory, 61

U

UNIVAC I, 12
Unsigned
multiply routine, 101
notation, 23-24
UNSPD, unsigned single-precision divide
subroutine, 193-195
UNSPM, unsigned single-precision
multiply subroutine, 190-192
Update list, 143
Use of subroutines, 120-121

\
Vectors, 82
w
Wait-for-complete 1/0, 165
X
Xor logical operation, 29
Z

Zero page, 55

Here is a guide to assembly language programming of the Intel 8080,
Motorola MC6800, and MOS Technology MCS6502 microprocessors. It is
written especially for beginning programmers with hobbyist micro-
computers based on one of these three chips. The topics covered renge
from data manipulations at the bit level up to data handling of tables and
lists, and from simple adds and subtracts up to floating-point operations.

Part 1 of this book is an introduction to basic computer concepts: micro-
processors, number systems, microcomputer operations, and data codes.
Part 2 covers the operation and architecture of the 8080, 6800, and 6502
microprocessors, including addressing modes, memory types, stack opera-
tions, instruction sets, /0, and interrupt processing. The third part of the
book, on assembly language programming, explains how to use the instruc-
tion sets of the three microprocessors to perform the various essential
functions of computer programming. Part 4 includes a chapteg on pro-
gramming algorithms and seventeen useful subroutines and thelr descrip-
tions for each of the three microprocessors. The instruction sets of the
microprocessors are given in the appendixes.

William Barden, Jr., is currently a Programming Consultant
for Abacus Corporation, in Santa Monica, California. He has
had 15 years experience iry technical writing; computer pro-
grammirg, computer design, and computer systems design,
mostly involving minicomputers. He is the author of the
popuiar SAMS book How to Buy & Use Minicomputers &
Micrccomputers. Mr. Barden is a member of the Association
for Computing Machinery and the |IEEE. His major interest is ,'l
- home computing systems. Other interests include mathe- i
. matical games and sailing.

7

$8:95/21459

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf

